These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 37031563)
1. A new insight into the mechanical properties of nanobiofibers and vibrational behavior of atomic force microscope beam considering them as the samples. Jafari A; Sadeghi A J Mech Behav Biomed Mater; 2023 Jun; 142():105842. PubMed ID: 37031563 [TBL] [Abstract][Full Text] [Related]
2. Silk fibroin H-fibroin/poly(ε-caprolactone) core-shell nanofibers with enhanced mechanical property and long-term drug release. Wang Z; Song X; Cui Y; Cheng K; Tian X; Dong M; Liu L J Colloid Interface Sci; 2021 Jul; 593():142-151. PubMed ID: 33744525 [TBL] [Abstract][Full Text] [Related]
3. Composite poly(l-lactic-acid)/silk fibroin scaffold prepared by electrospinning promotes chondrogenesis for cartilage tissue engineering. Li Z; Liu P; Yang T; Sun Y; You Q; Li J; Wang Z; Han B J Biomater Appl; 2016 May; 30(10):1552-65. PubMed ID: 27059497 [TBL] [Abstract][Full Text] [Related]
4. Intermolecular interactions between B. mori silk fibroin and poly(l-lactic acid) in electrospun composite nanofibrous scaffolds. Taddei P; Tozzi S; Zuccheri G; Martinotti S; Ranzato E; Chiono V; Carmagnola I; Tsukada M Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):777-787. PubMed ID: 27770955 [TBL] [Abstract][Full Text] [Related]
5. Mechanical properties of human kidney cells and their effects on the atomic force microscope beam vibrations. Jafari A; Sadeghi A; Lafouti M Microsc Res Tech; 2024 Aug; 87(8):1704-1717. PubMed ID: 38501545 [TBL] [Abstract][Full Text] [Related]
6. A novel knitted scaffold made of microfiber/nanofiber core-sheath yarns for tendon tissue engineering. Cai J; Xie X; Li D; Wang L; Jiang J; Mo X; Zhao J Biomater Sci; 2020 Aug; 8(16):4413-4425. PubMed ID: 32648862 [TBL] [Abstract][Full Text] [Related]
7. Determining the mechanical properties of electrospun poly-ε-caprolactone (PCL) nanofibers using AFM and a novel fiber anchoring technique. Baker SR; Banerjee S; Bonin K; Guthold M Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():203-212. PubMed ID: 26652365 [TBL] [Abstract][Full Text] [Related]
8. Mechanical Properties of Mouse Lung Cells and Their Effects on the Atomic Force Microscope Beam Vibrations. Zadeh NM; Sadeghi A; Lafouti M Cell Biochem Biophys; 2024 Jun; 82(2):1079-1099. PubMed ID: 38713404 [TBL] [Abstract][Full Text] [Related]
9. A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering. Shao W; He J; Han Q; Sang F; Wang Q; Chen L; Cui S; Ding B Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():599-610. PubMed ID: 27287159 [TBL] [Abstract][Full Text] [Related]
10. Characterization of dielectrophoresis-aligned nanofibrous silk fibroin-chitosan scaffold and its interactions with endothelial cells for tissue engineering applications. Dunne LW; Iyyanki T; Hubenak J; Mathur AB Acta Biomater; 2014 Aug; 10(8):3630-40. PubMed ID: 24821141 [TBL] [Abstract][Full Text] [Related]
11. Biologically improved nanofibrous scaffolds for cardiac tissue engineering. Bhaarathy V; Venugopal J; Gandhimathi C; Ponpandian N; Mangalaraj D; Ramakrishna S Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():268-77. PubMed ID: 25280706 [TBL] [Abstract][Full Text] [Related]
12. Nano/micro hybrid scaffold of PCL or P3HB nanofibers combined with silk fibroin for tendon and ligament tissue engineering. Naghashzargar E; Farè S; Catto V; Bertoldi S; Semnani D; Karbasi S; Tanzi MC J Appl Biomater Funct Mater; 2015 Jul; 13(2):e156-68. PubMed ID: 25589157 [TBL] [Abstract][Full Text] [Related]
13. Nanomechanical properties of poly(l-lactide) nanofibers after deformation. Shao J; Wang Y; Chen X; Hu X; Du C Colloids Surf B Biointerfaces; 2014 Aug; 120():97-101. PubMed ID: 24905683 [TBL] [Abstract][Full Text] [Related]
14. Influence of poly-(L-lactic acid) nanofiber functionalization on maximum load, Young's modulus, and strain of nanofiber scaffolds before and after cultivation of osteoblasts: an in vitro study. Paletta J; Erffmeier K; Theisen C; Hussain D; Wendorff JH; Greiner A; Fuchs-Winkelmann S; Schofer MD ScientificWorldJournal; 2009 Dec; 9():1382-93. PubMed ID: 20024513 [TBL] [Abstract][Full Text] [Related]
15. Quantitative analysis of mechanical and electrostatic properties of poly(lactic) acid fibers and poly(lactic) acid-carbon nanotube composites using atomic force microscopy. Iqbal Q; Bernstein P; Zhu Y; Rahamim J; Cebe P; Staii C Nanotechnology; 2015 Mar; 26(10):105702. PubMed ID: 25683087 [TBL] [Abstract][Full Text] [Related]
16. Fabrication and evaluation of poly(epsilon-caprolactone)/silk fibroin blend nanofibrous scaffold. Lim JS; Ki CS; Kim JW; Lee KG; Kang SW; Kweon HY; Park YH Biopolymers; 2012 May; 97(5):265-75. PubMed ID: 22169927 [TBL] [Abstract][Full Text] [Related]
18. Electrospun poly (ɛ-caprolactone)/silk fibroin core-sheath nanofibers and their potential applications in tissue engineering and drug release. Li L; Li H; Qian Y; Li X; Singh GK; Zhong L; Liu W; Lv Y; Cai K; Yang L Int J Biol Macromol; 2011 Aug; 49(2):223-32. PubMed ID: 21565216 [TBL] [Abstract][Full Text] [Related]
19. Characterization of bulk properties of nanofibrous scaffolds from nanomechanical properties of single nanofibers. Tan EP; Lim CT J Biomed Mater Res A; 2006 Jun; 77(3):526-33. PubMed ID: 16489588 [TBL] [Abstract][Full Text] [Related]
20. Study of the electrospun PLA/silk fibroin-gelatin composite nanofibrous scaffold for tissue engineering. Gui-Bo Y; You-Zhu Z; Shu-Dong W; De-Bing S; Zhi-Hui D; Wei-Guo F J Biomed Mater Res A; 2010 Apr; 93(1):158-63. PubMed ID: 19536837 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]