These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 37031596)

  • 1. Comparative life cycle analysis of critical materials recovery from spent Li-ion batteries.
    Mousavinezhad S; Kadivar S; Vahidi E
    J Environ Manage; 2023 Aug; 339():117887. PubMed ID: 37031596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.
    Chen X; Chen Y; Zhou T; Liu D; Hu H; Fan S
    Waste Manag; 2015 Apr; 38():349-56. PubMed ID: 25619126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media.
    Chen X; Zhou T
    Waste Manag Res; 2014 Nov; 32(11):1083-93. PubMed ID: 25378255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl).
    Guo Y; Li F; Zhu H; Li G; Huang J; He W
    Waste Manag; 2016 May; 51():227-233. PubMed ID: 26674969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective leaching of spent lithium-ion batteries using DL-lactic acid as lixiviant and selective separation of metals through precipitation and solvent extraction.
    Sahu S; Devi N
    Environ Sci Pollut Res Int; 2023 Aug; 30(39):90152-90167. PubMed ID: 36520282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subcritical Water Extraction of Valuable Metals from Spent Lithium-Ion Batteries.
    Lie J; Tanda S; Liu JC
    Molecules; 2020 May; 25(9):. PubMed ID: 32384592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental impact of spent lithium ion batteries and green recycling perspectives by organic acids - A review.
    Meshram P; Mishra A; Abhilash ; Sahu R
    Chemosphere; 2020 Mar; 242():125291. PubMed ID: 31896181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive evaluation on effective leaching of critical metals from spent lithium-ion batteries.
    Gao W; Liu C; Cao H; Zheng X; Lin X; Wang H; Zhang Y; Sun Z
    Waste Manag; 2018 May; 75():477-485. PubMed ID: 29459203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid extraction of valuable metals from spent LiNi
    Zhang J; Hu X; He T; Yuan X; Li X; Shi H; Yang L; Shao P; Wang C; Luo X
    Waste Manag; 2023 Jun; 165():19-26. PubMed ID: 37075685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: Process optimization and kinetic aspects.
    Golmohammadzadeh R; Rashchi F; Vahidi E
    Waste Manag; 2017 Jun; 64():244-254. PubMed ID: 28365275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative life cycle assessment of LFP and NCM batteries including the secondary use and different recycling technologies.
    Quan J; Zhao S; Song D; Wang T; He W; Li G
    Sci Total Environ; 2022 May; 819():153105. PubMed ID: 35041948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrometallurgical recovery of spent cobalt-based lithium-ion battery cathodes using ethanol as the reducing agent.
    Zhao J; Zhang B; Xie H; Qu J; Qu X; Xing P; Yin H
    Environ Res; 2020 Feb; 181():108803. PubMed ID: 31761334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recycling of cathode material from spent lithium ion batteries using an ultrasound-assisted DL-malic acid leaching system.
    Ning P; Meng Q; Dong P; Duan J; Xu M; Lin Y; Zhang Y
    Waste Manag; 2020 Feb; 103():52-60. PubMed ID: 31865035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Life cycle assessment of secondary use and physical recycling of lithium-ion batteries retired from electric vehicles in China.
    Yang H; Hu X; Zhang G; Dou B; Cui G; Yang Q; Yan X
    Waste Manag; 2024 Apr; 178():168-175. PubMed ID: 38401430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leaching kinetics of fluorine during the aluminum removal from spent Li-ion battery cathode materials.
    Li S; Zhu J
    J Environ Sci (China); 2024 Apr; 138():312-325. PubMed ID: 38135398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental impacts of hydrometallurgical recycling and reusing for manufacturing of lithium-ion traction batteries in China.
    Jiang S; Hua H; Zhang L; Liu X; Wu H; Yuan Z
    Sci Total Environ; 2022 Mar; 811():152224. PubMed ID: 34896143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective recycling of lithium from spent LiNi
    Zhang J; Ding Y; Shi H; Shao P; Yuan X; Hu X; Zhang Q; Zhang H; Luo D; Wang C; Yang L; Luo X
    J Environ Manage; 2024 Feb; 352():120021. PubMed ID: 38183916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective recovery of Li and FePO
    Kumar J; Shen X; Li B; Liu H; Zhao J
    Waste Manag; 2020 Jul; 113():32-40. PubMed ID: 32505109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries.
    Fan B; Chen X; Zhou T; Zhang J; Xu B
    Waste Manag Res; 2016 May; 34(5):474-81. PubMed ID: 26951340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental impact assessment of second life and recycling for LiFePO
    Wang Y; Tang B; Shen M; Wu Y; Qu S; Hu Y; Feng Y
    J Environ Manage; 2022 Jul; 314():115083. PubMed ID: 35447455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.