These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37031805)

  • 1. Insights into thermal hydrolysis pretreatment temperature for enhancing volatile fatty acids production from sludge fermentation: Performance and mechanism.
    Xiang Z; Huang X; Chen H; Liu B; Liu Z; Dong W; Wang H
    Bioresour Technol; 2023 Jul; 379():129032. PubMed ID: 37031805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of mixing intensity on volatile fatty acids production in sludge alkaline fermentation: Insights from dissolved organic matter characteristics and functional microorganisms.
    Ma S; Xu K; Ren H
    J Environ Manage; 2023 Nov; 345():118801. PubMed ID: 37591099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acidogenic fermentation of iron-enhanced primary sedimentation sludge under different pH conditions for production of volatile fatty acids.
    Lin L; Li XY
    Chemosphere; 2018 Mar; 194():692-700. PubMed ID: 29245135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergic role of ferrate and nitrite for triggering waste activated sludge solubilisation and acidogenic fermentation: Effectiveness evaluation and mechanism elucidation.
    Xie J; Xin X; Ai X; Hong J; Wen Z; Li W; Lv S
    Water Res; 2022 Nov; 226():119287. PubMed ID: 36323210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct effects of chemical- and bio- flocculants on the sludge acidogenic fermentation for volatile fatty acids production by affecting the acidogenic steps, microbial community structure and metabolic functions.
    Luo J; Xia X; Li Y; Fang S; Wang F; Cheng X; Feng L; Huang W; Wu Y
    Sci Total Environ; 2023 Dec; 905():167207. PubMed ID: 37730033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surfactant-assisted thermal hydrolysis off waste activated sludge for improved dewaterability, organic release, and volatile fatty acid production.
    Shi X; Zhu L; Li B; Liang J; Li XY
    Waste Manag; 2021 Apr; 124():339-347. PubMed ID: 33662765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of thermal hydrolysis pretreatment on volatile fatty acids production in sludge acidification and subsequent polyhydroxyalkanoates production.
    Zhang D; Jiang H; Chang J; Sun J; Tu W; Wang H
    Bioresour Technol; 2019 May; 279():92-100. PubMed ID: 30711757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: Alkaline or neutral pH?
    Ma H; Chen X; Liu H; Liu H; Fu B
    Waste Manag; 2016 Feb; 48():397-403. PubMed ID: 26652215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activated sludge thermal hydrolysis for liquid fermentation to produce VFAs: Exploring the balance of carbon release between quantity, quality and recovery.
    Liu H; Dong L; Zhang X; Zhao C; Shi M; Li Y; Liu H
    J Environ Manage; 2022 Nov; 322():115976. PubMed ID: 36041300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polysorbate-80 pretreatment contributing to volatile fatty acids production associated microbial interactions via acidogenic fermentation of waste activated sludge.
    Ai X; Xin X; Wei W; Xie J; Hong J
    Bioresour Technol; 2022 Feb; 345():126488. PubMed ID: 34871722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of clarithromycin on the production of volatile fatty acids from waste activated sludge anaerobic fermentation.
    Huang X; Xu Q; Wu Y; Wang D; Yang Q; Chen F; Wu Y; Pi Z; Chen Z; Li X; Zhong Q
    Bioresour Technol; 2019 Sep; 288():121598. PubMed ID: 31176944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasonic-assisted hypochlorite activation accelerated volatile fatty acids production during sewage sludge fermentation: Critical insights on solubilization/hydrolysis stages and microbial traits.
    Zhu R; Zhao S; Ju C; Yang Q; Cui C; Wu L; Wang M; Feng L; Wu Y
    Bioresour Technol; 2023 Sep; 383():129233. PubMed ID: 37244311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Full-scale production of VFAs from sewage sludge by anaerobic alkaline fermentation to improve biological nutrients removal in domestic wastewater.
    Liu H; Han P; Liu H; Zhou G; Fu B; Zheng Z
    Bioresour Technol; 2018 Jul; 260():105-114. PubMed ID: 29625281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deciphering the key operational factors and microbial features associated with volatile fatty acids production during paper wastes and sewage sludge co-fermentation.
    Luo J; Li Y; Li H; Li Y; Lin L; Li Y; Huang W; Cao J; Wu Y
    Bioresour Technol; 2022 Jan; 344(Pt B):126318. PubMed ID: 34775055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metagenomic insight of fluorene-boosted sludge acidogenic fermentation: Metabolic transformation of amino acids and monosaccharides.
    Zhou X; Liu T; Zhang S; Kang B; Duan X; Yan Y; Feng L; Chen Y
    Sci Total Environ; 2023 Mar; 865():161122. PubMed ID: 36587690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into microbial interaction profiles contributing to volatile fatty acids production via acidogenic fermentation of waste activated sludge assisted by calcium oxide pretreatment.
    Xin X; She Y; Hong J
    Bioresour Technol; 2021 Jan; 320(Pt A):124287. PubMed ID: 33120057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of diclofenac on the production of volatile fatty acids from anaerobic fermentation of waste activated sludge.
    Hu J; Zhao J; Wang D; Li X; Zhang D; Xu Q; Peng L; Yang Q; Zeng G
    Bioresour Technol; 2018 Apr; 254():7-15. PubMed ID: 29413941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of sulfadiazine on anaerobic fermentation of waste activated sludge for volatile fatty acids production: Focusing on microbial responses.
    Xie J; Duan X; Feng L; Yan Y; Wang F; Dong H; Jia R; Zhou Q
    Chemosphere; 2019 Mar; 219():305-312. PubMed ID: 30543966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced hydrolysis-acidification of high-solids and low-organic-content sludge by biological thermal-alkaline synergism.
    Huang Y; Wang Y; Liu S; Huang W; He L; Zhou J
    Bioresour Technol; 2019 Dec; 294():122234. PubMed ID: 31610488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced production of short-chain fatty acids from sludge by thermal hydrolysis and acidogenic fermentation for organic resource recovery.
    Wen L; Huang XW; Li XY
    Sci Total Environ; 2022 Jul; 828():154389. PubMed ID: 35276155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.