These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 37031949)
1. A Pseudomonas taiwanensis malonyl-CoA platform strain for polyketide synthesis. Schwanemann T; Otto M; Wynands B; Marienhagen J; Wierckx N Metab Eng; 2023 May; 77():219-230. PubMed ID: 37031949 [TBL] [Abstract][Full Text] [Related]
2. Engineering intracellular malonyl-CoA availability in microbial hosts and its impact on polyketide and fatty acid synthesis. Milke L; Marienhagen J Appl Microbiol Biotechnol; 2020 Jul; 104(14):6057-6065. PubMed ID: 32385515 [TBL] [Abstract][Full Text] [Related]
3. Modulation of the central carbon metabolism of Corynebacterium glutamicum improves malonyl-CoA availability and increases plant polyphenol synthesis. Milke L; Ferreira P; Kallscheuer N; Braga A; Vogt M; Kappelmann J; Oliveira J; Silva AR; Rocha I; Bott M; Noack S; Faria N; Marienhagen J Biotechnol Bioeng; 2019 Jun; 116(6):1380-1391. PubMed ID: 30684355 [TBL] [Abstract][Full Text] [Related]
4. Direct Utilization of Peroxisomal Acetyl-CoA for the Synthesis of Polyketide Compounds in Lin P; Fu Z; Liu X; Liu C; Bai Z; Yang Y; Li Y ACS Synth Biol; 2023 Jun; 12(6):1599-1607. PubMed ID: 37172280 [TBL] [Abstract][Full Text] [Related]
5. Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria. Yang D; Kim WJ; Yoo SM; Choi JH; Ha SH; Lee MH; Lee SY Proc Natl Acad Sci U S A; 2018 Oct; 115(40):9835-9844. PubMed ID: 30232266 [TBL] [Abstract][Full Text] [Related]
6. A novel process for obtaining pinosylvin using combinatorial bioengineering in Escherichia coli. Liang JL; Guo LQ; Lin JF; He ZQ; Cai FJ; Chen JF World J Microbiol Biotechnol; 2016 Jun; 32(6):102. PubMed ID: 27116968 [TBL] [Abstract][Full Text] [Related]
7. De novo resveratrol production through modular engineering of an Escherichia coli-Saccharomyces cerevisiae co-culture. Yuan SF; Yi X; Johnston TG; Alper HS Microb Cell Fact; 2020 Jul; 19(1):143. PubMed ID: 32664999 [TBL] [Abstract][Full Text] [Related]
8. Modular pathway engineering for resveratrol and piceatannol production in engineered Escherichia coli. Shrestha A; Pandey RP; Pokhrel AR; Dhakal D; Chu LL; Sohng JK Appl Microbiol Biotechnol; 2018 Nov; 102(22):9691-9706. PubMed ID: 30178203 [TBL] [Abstract][Full Text] [Related]
9. Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica. Liu H; Marsafari M; Wang F; Deng L; Xu P Metab Eng; 2019 Dec; 56():60-68. PubMed ID: 31470116 [TBL] [Abstract][Full Text] [Related]
10. Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1. Shi S; Chen Y; Siewers V; Nielsen J mBio; 2014 May; 5(3):e01130-14. PubMed ID: 24803522 [TBL] [Abstract][Full Text] [Related]
11. Efficient heterologous production of atrochrysone carboxylic acid-related polyketides in an Aspergillus oryzae host with enhanced malonyl-coenzyme A supply. Kan E; Katsuyama Y; Maruyama JI; Tamano K; Koyama Y; Ohnishi Y J Gen Appl Microbiol; 2020 Aug; 66(3):195-199. PubMed ID: 31776294 [TBL] [Abstract][Full Text] [Related]
12. Tailoring Corynebacterium glutamicum towards increased malonyl-CoA availability for efficient synthesis of the plant pentaketide noreugenin. Milke L; Kallscheuer N; Kappelmann J; Marienhagen J Microb Cell Fact; 2019 Apr; 18(1):71. PubMed ID: 30975146 [TBL] [Abstract][Full Text] [Related]
14. Engineered dynamic distribution of malonyl-CoA flux for improving polyketide biosynthesis in Komagataella phaffii. Wen J; Tian L; Liu Q; Zhang Y; Cai M J Biotechnol; 2020 Aug; 320():80-85. PubMed ID: 32574793 [TBL] [Abstract][Full Text] [Related]
15. De Novo Synthesis of Resveratrol from Sucrose by Metabolically Engineered Ibrahim GG; Perera M; Abdulmalek SA; Yan J; Yan Y Biomolecules; 2024 Jun; 14(6):. PubMed ID: 38927115 [TBL] [Abstract][Full Text] [Related]
16. Applied evolution: Dual dynamic regulations-based approaches in engineering intracellular malonyl-CoA availability. Wu J; Zhou L; Duan X; Peng H; Liu S; Zhuang Q; Pablo CM; Fan X; Ding S; Dong M; Zhou J Metab Eng; 2021 Sep; 67():403-416. PubMed ID: 34411702 [TBL] [Abstract][Full Text] [Related]
17. Multi-omics view of recombinant Yarrowia lipolytica: Enhanced ketogenic amino acid catabolism increases polyketide-synthase-driven docosahexaenoic production to high selectivity at the gram scale. Jovanovic Gasovic S; Dietrich D; Gläser L; Cao P; Kohlstedt M; Wittmann C Metab Eng; 2023 Nov; 80():45-65. PubMed ID: 37683719 [TBL] [Abstract][Full Text] [Related]
18. Connection of propionyl-CoA metabolism to polyketide biosynthesis in Aspergillus nidulans. Zhang YQ; Brock M; Keller NP Genetics; 2004 Oct; 168(2):785-94. PubMed ID: 15514053 [TBL] [Abstract][Full Text] [Related]
19. A plant malonyl-CoA synthetase enhances lipid content and polyketide yield in yeast cells. Wang Y; Chen H; Yu O Appl Microbiol Biotechnol; 2014 Jun; 98(12):5435-47. PubMed ID: 24682482 [TBL] [Abstract][Full Text] [Related]
20. Activity of Fatty Acid Biosynthesis Initiating Ketosynthase FabH with Acetyl/Malonyl-oxa/aza(dethia)CoAs. Boram TJ; Benjamin AB; Silva de Sousa A; Stunkard LM; Stewart TA; Adams TJ; Craft NA; Velázquez-Marrero KG; Ling J; Nice JN; Lohman JR ACS Chem Biol; 2023 Jan; 18(1):49-58. PubMed ID: 36626717 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]