These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37032439)

  • 1. Theoretical Design of an Mo
    Chen J; Zhou Z; Li Z; Wang Z
    Chemphyschem; 2023 Jul; 24(13):e202300095. PubMed ID: 37032439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interlayer coupling and electric field tunable electronic properties and Schottky barrier in a graphene/bilayer-GaSe van der Waals heterostructure.
    Phuc HV; Hieu NN; Hoi BD; Nguyen CV
    Phys Chem Chem Phys; 2018 Jul; 20(26):17899-17908. PubMed ID: 29926024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical design of SnS
    Zhou Z; Deng J; Zhang X; Chen J; Liu J; Wang Z
    Phys Chem Chem Phys; 2022 Jan; 24(2):966-974. PubMed ID: 34914818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Band Gap Engineering of Mo
    Zhou Z; Zhang X; Chen X; Cheng Z; Wang Z
    Inorg Chem; 2024 Apr; 63(17):7714-7724. PubMed ID: 38630017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proposal of graphene band-gap enhancement via heterostructure of graphene with boron nitride in vertical stacking scheme.
    Sattar A; Moazzam U; Bashir AI; Reza A; Latif H; Usman A; Amjad RJ; Mubshrah A; Nasir A
    Nanotechnology; 2021 Mar; 32(22):. PubMed ID: 33601353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of Switchable Photoresponse of a Monolayer WSe2-MoS2 Lateral Heterostructure via Photocurrent Spectral Atomic Force Microscopic Imaging.
    Son Y; Li MY; Cheng CC; Wei KH; Liu P; Wang QH; Li LJ; Strano MS
    Nano Lett; 2016 Jun; 16(6):3571-7. PubMed ID: 27120519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controllable Synthesis of 2H-1T' Mo
    Sun X; Liu Y; Shi J; Si C; Du J; Liu X; Jiang C; Yang S
    Adv Mater; 2023 Sep; 35(38):e2304171. PubMed ID: 37278555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mid-Infrared Optoelectronic Devices Based on Two-Dimensional Materials beyond Graphene: Status and Trends.
    Cao R; Fan S; Yin P; Ma C; Zeng Y; Wang H; Khan K; Wageh S; Al-Ghamd AA; Tareen AK; Al-Sehemi AG; Shi Z; Xiao J; Zhang H
    Nanomaterials (Basel); 2022 Jul; 12(13):. PubMed ID: 35808105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contact evaluation of the penta-PdPSe/graphene vdW heterojunction: tuning the Schottky barrier and optical properties.
    Hassan A; Guo Y; Younis U; Mehmood A; Tian X; Wang Q
    Phys Chem Chem Phys; 2024 Apr; 26(14):11014-11022. PubMed ID: 38526444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The electric field modulation of electronic properties in a type-II phosphorene/PbI
    Wei Y; Wang F; Zhang W; Zhang X
    Phys Chem Chem Phys; 2019 Apr; 21(15):7765-7772. PubMed ID: 30916052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional graphyne-graphene heterostructure for all-carbon transistors.
    Huang J; Kang J
    J Phys Condens Matter; 2022 Feb; 34(16):. PubMed ID: 35108693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Schottky barrier modulation of a GaTe/graphene heterostructure by interlayer distance and perpendicular electric field.
    Li H; Zhou Z; Zhang K; Wang H
    Nanotechnology; 2019 Oct; 30(40):405207. PubMed ID: 31247615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable Schottky Barrier and Interfacial Electronic Properties in Graphene/ZnSe Heterostructures.
    Xiao W; Liu T; Zhang Y; Zhong Z; Zhang X; Luo Z; Lv B; Zhou X; Zhang Z; Liu X
    Front Chem; 2021; 9():744977. PubMed ID: 34660536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A graphene/Janus B
    Xie T; Ma X; Guo Y; Yuan G; Liao J; Ma N; Huang C
    Phys Chem Chem Phys; 2023 Nov; 25(45):31238-31248. PubMed ID: 37955158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photodetection Properties of MoS
    Al Qaydi M; Kotbi A; Rajput NS; Bouchalkha A; El Marssi M; Matras G; Kasmi C; Jouiad M
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36615933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of Rhenium-Doped Molybdenum Sulfide by Atmospheric Pressure Chemical Vapor Deposition (CVD) for a High-Performance Photodetector.
    Liu X; Wang J; Lin Y; Zhou J; Liu Q; Yu W; Cai Y; Li X; Botcha VD; Rao T; Huang S
    ACS Omega; 2022 Dec; 7(51):48301-48309. PubMed ID: 36591144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controllable growth of wafer-scale monolayer transition metal dichalcogenides ternary alloys with tunable band gap.
    Li R; Yu J; Yao B; Huang X; Fu Z; Zhou Z; Yuan G; Xu J; Gao L
    Nanotechnology; 2022 Dec; 34(7):. PubMed ID: 36384029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrahigh Gauge Factor in Graphene/MoS
    Lee I; Kang WT; Shin YS; Kim YR; Won UY; Kim K; Duong DL; Lee K; Heo J; Lee YH; Yu WJ
    ACS Nano; 2019 Jul; 13(7):8392-8400. PubMed ID: 31241306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Performance Two-Dimensional Schottky Diodes Utilizing Chemical Vapour Deposition-Grown Graphene-MoS
    Huang H; Xu W; Chen T; Chang RJ; Sheng Y; Zhang Q; Hou L; Warner JH
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37258-37266. PubMed ID: 30346128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.