These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 37032487)
1. Quantile regression shrinkage and selection via the Lqsso. Daneshvar A; Golalizadeh M J Biopharm Stat; 2024 May; 34(3):297-322. PubMed ID: 37032487 [TBL] [Abstract][Full Text] [Related]
2. Regression shrinkage and selection via least quantile shrinkage and selection operator. Daneshvar A; Mousa G PLoS One; 2023; 18(2):e0266267. PubMed ID: 36795659 [TBL] [Abstract][Full Text] [Related]
3. Shrinkage Estimation of Varying Covariate Effects Based On Quantile Regression. Peng L; Xu J; Kutner N Stat Comput; 2014 Sep; 24(5):853-869. PubMed ID: 25332515 [TBL] [Abstract][Full Text] [Related]
4. Interquantile Shrinkage and Variable Selection in Quantile Regression. Jiang L; Bondell HD; Wang HJ Comput Stat Data Anal; 2014 Jan; 69():208-219. PubMed ID: 24653545 [TBL] [Abstract][Full Text] [Related]
5. Adaptive lasso for the Cox regression with interval censored and possibly left truncated data. Li C; Pak D; Todem D Stat Methods Med Res; 2020 Apr; 29(4):1243-1255. PubMed ID: 31203741 [TBL] [Abstract][Full Text] [Related]
6. The spike-and-slab quantile LASSO for robust variable selection in cancer genomics studies. Liu Y; Ren J; Ma S; Wu C Stat Med; 2024 Nov; 43(26):4928-4983. PubMed ID: 39260448 [TBL] [Abstract][Full Text] [Related]
7. ADAPTIVE ROBUST VARIABLE SELECTION. Fan J; Fan Y; Barut E Ann Stat; 2014 Feb; 42(1):324-351. PubMed ID: 25580039 [TBL] [Abstract][Full Text] [Related]
8. On the robustness of the adaptive lasso to model misspecification. Lu W; Goldberg Y; Fine JP Biometrika; 2012 Sep; 99(3):717-731. PubMed ID: 25294946 [TBL] [Abstract][Full Text] [Related]
9. Penalized weighted smoothed quantile regression for high-dimensional longitudinal data. Song Y; Han H; Fu L; Wang T Stat Med; 2024 May; 43(10):2007-2042. PubMed ID: 38634309 [TBL] [Abstract][Full Text] [Related]
10. Bayesian variable selection in linear quantile mixed models for longitudinal data with application to macular degeneration. Ji Y; Shi H PLoS One; 2020; 15(10):e0241197. PubMed ID: 33104698 [TBL] [Abstract][Full Text] [Related]
11. Smoothed quantile regression for partially functional linear models in high dimensions. Wang Z; Bai Y; Härdle WK; Tian M Biom J; 2023 Oct; 65(7):e2200060. PubMed ID: 37147793 [TBL] [Abstract][Full Text] [Related]
12. Consistent model identification of varying coefficient quantile regression with BIC tuning parameter selection. Zheng Q; Peng L Commun Stat Theory Methods; 2017; 46(3):1031-1049. PubMed ID: 28008212 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous estimation and variable selection in median regression using Lasso-type penalty. Xu J; Ying Z Ann Inst Stat Math; 2010 Jun; 62(3):487-514. PubMed ID: 23976790 [TBL] [Abstract][Full Text] [Related]
14. GLOBALLY ADAPTIVE QUANTILE REGRESSION WITH ULTRA-HIGH DIMENSIONAL DATA. Zheng Q; Peng L; He X Ann Stat; 2015 Oct; 43(5):2225-2258. PubMed ID: 26604424 [TBL] [Abstract][Full Text] [Related]
15. Variable selection for ultra-high dimensional quantile regression with missing data and measurement error. Bai Y; Tian M; Tang ML; Lee WY Stat Methods Med Res; 2021 Jan; 30(1):129-150. PubMed ID: 32746735 [TBL] [Abstract][Full Text] [Related]
16. Sign-based Shrinkage Based on an Asymmetric LASSO Penalty. Kawaguchi ES; Darst BF; Wang K; Conti DV J Data Sci; 2021; 19(3):429-449. PubMed ID: 35222618 [TBL] [Abstract][Full Text] [Related]
17. Interquantile Shrinkage in Regression Models. Jiang L; Wang HJ; Bondell HD J Comput Graph Stat; 2013; 22(4):. PubMed ID: 24363546 [TBL] [Abstract][Full Text] [Related]
18. A flexible quantile regression model for medical costs with application to Medical Expenditure Panel Survey Study. Zhao X; Wang W; Liu L; Shih YT Stat Med; 2018 Jul; 37(17):2645-2666. PubMed ID: 29722044 [TBL] [Abstract][Full Text] [Related]
19. Jackknife model averaging for high-dimensional quantile regression. Wang M; Zhang X; Wan ATK; You K; Zou G Biometrics; 2023 Mar; 79(1):178-189. PubMed ID: 34608993 [TBL] [Abstract][Full Text] [Related]
20. High-dimensional variable selection accounting for heterogeneity in regression coefficients across multiple data sources. Yu T; Ye S; Wang R Can J Stat; 2024 Sep; 52(3):900-923. PubMed ID: 39319323 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]