These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 37032868)

  • 1. Growth rate-associated transcriptome reorganization in response to genomic, environmental, and evolutionary interruptions.
    Matsui Y; Nagai M; Ying BW
    Front Microbiol; 2023; 14():1145673. PubMed ID: 37032868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental evolution for the recovery of growth loss due to genome reduction.
    Hitomi K; Ishii Y; Ying BW
    Elife; 2024 May; 13():. PubMed ID: 38690805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multilevel comparative analysis of the contributions of genome reduction and heat shock to the Escherichia coli transcriptome.
    Ying BW; Seno S; Kaneko F; Matsuda H; Yomo T
    BMC Genomics; 2013 Jan; 14():25. PubMed ID: 23324527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial transcriptome reorganization in thermal adaptive evolution.
    Ying BW; Matsumoto Y; Kitahara K; Suzuki S; Ono N; Furusawa C; Kishimoto T; Yomo T
    BMC Genomics; 2015 Oct; 16():802. PubMed ID: 26474851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional Potential Determines the Adaptability of Escherichia coli Strains with Different Fitness Backgrounds.
    Kim K; Kwon SK; Kim P; Kim JF
    Microbiol Spectr; 2022 Dec; 10(6):e0252822. PubMed ID: 36445144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The highly conserved chromosomal periodicity of transcriptomes and the correlation of its amplitude with the growth rate in Escherichia coli.
    Nagai M; Kurokawa M; Ying BW
    DNA Res; 2020 Jun; 27(3):. PubMed ID: 32866232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome structure predicts modular transcriptome responses to genetic and environmental conditions.
    Mark S; Weiss J; Sharma E; Liu T; Wang W; Claycomb JM; Cutter AD
    Mol Ecol; 2019 Aug; 28(16):3681-3697. PubMed ID: 31325381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The genomic landscape of compensatory evolution.
    Szamecz B; Boross G; Kalapis D; Kovács K; Fekete G; Farkas Z; Lázár V; Hrtyan M; Kemmeren P; Groot Koerkamp MJ; Rutkai E; Holstege FC; Papp B; Pál C
    PLoS Biol; 2014 Aug; 12(8):e1001935. PubMed ID: 25157590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Escherichia coli transcriptome linked to growth fitness.
    Ying BW; Yama K; Kitahara K; Yomo T
    Genom Data; 2016 Mar; 7():1-3. PubMed ID: 26981347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordinated Changes in Mutation and Growth Rates Induced by Genome Reduction.
    Nishimura I; Kurokawa M; Liu L; Ying BW
    mBio; 2017 Jul; 8(4):. PubMed ID: 28679744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Construction and analysis of transcriptome-based hepatolenticular degeneration regulatory network].
    Yang X; He S; Li X; Zhou D; Bo X; Huang J
    Sheng Wu Gong Cheng Xue Bao; 2022 Oct; 38(10):3844-3858. PubMed ID: 36305413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlated chromosomal periodicities according to the growth rate and gene expression.
    Liu L; Kurokawa M; Nagai M; Seno S; Ying BW
    Sci Rep; 2020 Sep; 10(1):15531. PubMed ID: 32968121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene Expression Order Attributed to Genome Reduction and the Steady Cellular State in
    Ying BW; Yama K
    Front Microbiol; 2018; 9():2255. PubMed ID: 30294319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative functional pan-genome analyses to build connections between genomic dynamics and phenotypic evolution in polycyclic aromatic hydrocarbon metabolism in the genus Mycobacterium.
    Kweon O; Kim SJ; Blom J; Kim SK; Kim BS; Baek DH; Park SI; Sutherland JB; Cerniglia CE
    BMC Evol Biol; 2015 Feb; 15():21. PubMed ID: 25880171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR Perturbation of Gene Expression Alters Bacterial Fitness under Stress and Reveals Underlying Epistatic Constraints.
    Otoupal PB; Erickson KE; Escalas-Bordoy A; Chatterjee A
    ACS Synth Biol; 2017 Jan; 6(1):94-107. PubMed ID: 27529436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overall changes in the transcriptome of Escherichia coli O26:H11 induced by a subinhibitory concentration of ciprofloxacin.
    Valat C; Hirchaud E; Drapeau A; Touzain F; de Boisseson C; Haenni M; Blanchard Y; Madec JY
    J Appl Microbiol; 2020 Dec; 129(6):1577-1588. PubMed ID: 32506645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression profiles reveal parallel evolution of epistatic interactions involving the CRP regulon in Escherichia coli.
    Cooper TF; Remold SK; Lenski RE; Schneider D
    PLoS Genet; 2008 Feb; 4(2):e35. PubMed ID: 18282111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epistatic interactions among metabolic genes depend upon environmental conditions.
    Jagdishchandra Joshi C; Prasad A
    Mol Biosyst; 2014 Oct; 10(10):2578-89. PubMed ID: 25018101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modular epistasis and the compensatory evolution of gene deletion mutants.
    Rojas Echenique JI; Kryazhimskiy S; Nguyen Ba AN; Desai MM
    PLoS Genet; 2019 Feb; 15(2):e1007958. PubMed ID: 30768593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasticity and epistasis strongly affect bacterial fitness after losing multiple metabolic genes.
    D'Souza G; Waschina S; Kaleta C; Kost C
    Evolution; 2015 May; 69(5):1244-54. PubMed ID: 25765095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.