These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 37032909)
21. Discriminating changes in intracellular NADH/NAD Wilkening S; Schmitt FJ; Lenz O; Zebger I; Horch M; Friedrich T Biochim Biophys Acta Bioenerg; 2019 Oct; 1860(10):148062. PubMed ID: 31419395 [TBL] [Abstract][Full Text] [Related]
22. Impact of alterations near the [NiFe] active site on the function of the H(2) sensor from Ralstonia eutropha. Gebler A; Burgdorf T; De Lacey AL; Rüdiger O; Martinez-Arias A; Lenz O; Friedrich B FEBS J; 2007 Jan; 274(1):74-85. PubMed ID: 17222178 [TBL] [Abstract][Full Text] [Related]
23. Hydrogen-induced structural changes at the nickel site of the regulatory [NiFe] hydrogenase from Ralstonia eutropha detected by X-ray absorption spectroscopy. Haumann M; Porthun A; Buhrke T; Liebisch P; Meyer-Klaucke W; Friedrich B; Dau H Biochemistry; 2003 Sep; 42(37):11004-15. PubMed ID: 12974636 [TBL] [Abstract][Full Text] [Related]
24. Sustained photoevolution of molecular hydrogen in a mutant of Synechocystis sp. strain PCC 6803 deficient in the type I NADPH-dehydrogenase complex. Cournac L; Guedeney G; Peltier G; Vignais PM J Bacteriol; 2004 Mar; 186(6):1737-46. PubMed ID: 14996805 [TBL] [Abstract][Full Text] [Related]
25. Phototrophic hydrogen production from a clostridial [FeFe] hydrogenase expressed in the heterocysts of the cyanobacterium Nostoc PCC 7120. Avilan L; Roumezi B; Risoul V; Bernard CS; Kpebe A; Belhadjhassine M; Rousset M; Brugna M; Latifi A Appl Microbiol Biotechnol; 2018 Jul; 102(13):5775-5783. PubMed ID: 29691627 [TBL] [Abstract][Full Text] [Related]
26. A hydrogen-sensing multiprotein complex controls aerobic hydrogen metabolism in Ralstonia eutropha. Friedrich B; Buhrke T; Burgdorf T; Lenz O Biochem Soc Trans; 2005 Feb; 33(Pt 1):97-101. PubMed ID: 15667276 [TBL] [Abstract][Full Text] [Related]
28. Growth of the facultative chemolithoautotroph Ralstonia eutropha on organic waste materials: growth characteristics, redox regulation and hydrogenase activity. Poladyan A; Blbulyan S; Sahakyan M; Lenz O; Trchounian A Microb Cell Fact; 2019 Nov; 18(1):201. PubMed ID: 31739794 [TBL] [Abstract][Full Text] [Related]
29. Construction of a chassis for hydrogen production: physiological and molecular characterization of a Synechocystis sp. PCC 6803 mutant lacking a functional bidirectional hydrogenase. Pinto F; van Elburg KA; Pacheco CC; Lopo M; Noirel J; Montagud A; Urchueguía JF; Wright PC; Tamagnini P Microbiology (Reading); 2012 Feb; 158(Pt 2):448-464. PubMed ID: 22096147 [TBL] [Abstract][Full Text] [Related]
30. Production of biohydrogen by recombinant expression of [NiFe]-hydrogenase 1 in Escherichia coli. Kim JY; Jo BH; Cha HJ Microb Cell Fact; 2010 Jul; 9():54. PubMed ID: 20604966 [TBL] [Abstract][Full Text] [Related]
31. Structure of an Actinobacterial-Type [NiFe]-Hydrogenase Reveals Insight into O2-Tolerant H2 Oxidation. Schäfer C; Bommer M; Hennig SE; Jeoung JH; Dobbek H; Lenz O Structure; 2016 Feb; 24(2):285-92. PubMed ID: 26749450 [TBL] [Abstract][Full Text] [Related]
32. The bidirectional NiFe-hydrogenase in Synechocystis sp. PCC 6803 is reduced by flavodoxin and ferredoxin and is essential under mixotrophic, nitrate-limiting conditions. Gutekunst K; Chen X; Schreiber K; Kaspar U; Makam S; Appel J J Biol Chem; 2014 Jan; 289(4):1930-7. PubMed ID: 24311779 [TBL] [Abstract][Full Text] [Related]
33. Expression of a functional NAD-reducing [NiFe] hydrogenase from the gram-positive Rhodococcus opacus in the gram-negative Ralstonia eutropha. Porthun A; Bernhard M; Friedrich B Arch Microbiol; 2002 Feb; 177(2):159-66. PubMed ID: 11807565 [TBL] [Abstract][Full Text] [Related]
34. Requirements for construction of a functional hybrid complex of photosystem I and [NiFe]-hydrogenase. Schwarze A; Kopczak MJ; Rögner M; Lenz O Appl Environ Microbiol; 2010 Apr; 76(8):2641-51. PubMed ID: 20154103 [TBL] [Abstract][Full Text] [Related]
35. Inhibition of hydrogen uptake in Escherichia coli by expressing the hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803. Maeda T; Vardar G; Self WT; Wood TK BMC Biotechnol; 2007 May; 7():25. PubMed ID: 17521447 [TBL] [Abstract][Full Text] [Related]
36. Construction and use of a Cupriavidus necator H16 soluble hydrogenase promoter (PSH) fusion to gfp (green fluorescent protein). Jugder BE; Welch J; Braidy N; Marquis CP PeerJ; 2016; 4():e2269. PubMed ID: 27547572 [TBL] [Abstract][Full Text] [Related]
37. The energy metabolism of Jahn M; Crang N; Gynnå AH; Kabova D; Frielingsdorf S; Lenz O; Charpentier E; Hudson EP Appl Environ Microbiol; 2024 Oct; 90(10):e0074824. PubMed ID: 39320125 [TBL] [Abstract][Full Text] [Related]
38. Engineering Nitrogen Fixation Activity in an Oxygenic Phototroph. Liu D; Liberton M; Yu J; Pakrasi HB; Bhattacharyya-Pakrasi M mBio; 2018 Jun; 9(3):. PubMed ID: 29871920 [TBL] [Abstract][Full Text] [Related]
39. Proton Transfer Pathways between Active Sites and Proximal Clusters in the Membrane-Bound [NiFe] Hydrogenase. Tombolelli D; Mroginski MA J Phys Chem B; 2019 Apr; 123(16):3409-3420. PubMed ID: 30931567 [TBL] [Abstract][Full Text] [Related]
40. Implementation of a high cell density fed-batch for heterologous production of active [NiFe]-hydrogenase in Escherichia coli bioreactor cultivations. Fan Q; Waldburger S; Neubauer P; Riedel SL; Gimpel M Microb Cell Fact; 2022 Sep; 21(1):193. PubMed ID: 36123684 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]