These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 37032909)
41. Engineering the Calvin-Benson-Bassham cycle and hydrogen utilization pathway of Ralstonia eutropha for improved autotrophic growth and polyhydroxybutyrate production. Li Z; Xin X; Xiong B; Zhao D; Zhang X; Bi C Microb Cell Fact; 2020 Dec; 19(1):228. PubMed ID: 33308236 [TBL] [Abstract][Full Text] [Related]
42. Direct detection of a hydrogen ligand in the [NiFe] center of the regulatory H2-sensing hydrogenase from Ralstonia eutropha in its reduced state by HYSCORE and ENDOR spectroscopy. Brecht M; van Gastel M; Buhrke T; Friedrich B; Lubitz W J Am Chem Soc; 2003 Oct; 125(43):13075-83. PubMed ID: 14570480 [TBL] [Abstract][Full Text] [Related]
43. Enzymatic and spectroscopic properties of a thermostable [NiFe]‑hydrogenase performing H Preissler J; Wahlefeld S; Lorent C; Teutloff C; Horch M; Lauterbach L; Cramer SP; Zebger I; Lenz O Biochim Biophys Acta Bioenerg; 2018 Jan; 1859(1):8-18. PubMed ID: 28970007 [TBL] [Abstract][Full Text] [Related]
44. Design and characterisation of synthetic operons for biohydrogen technology. Lamont CM; Sargent F Arch Microbiol; 2017 Apr; 199(3):495-503. PubMed ID: 27872947 [TBL] [Abstract][Full Text] [Related]
46. The cyanobacterium Synechocystis sp. PCC 6803 is able to express an active [FeFe]-hydrogenase without additional maturation proteins. Berto P; D'Adamo S; Bergantino E; Vallese F; Giacometti GM; Costantini P Biochem Biophys Res Commun; 2011 Feb; 405(4):678-83. PubMed ID: 21284939 [TBL] [Abstract][Full Text] [Related]
47. System analysis and improved [FeFe] hydrogenase O Koo J; Swartz JR Metab Eng; 2018 Sep; 49():21-27. PubMed ID: 30057338 [TBL] [Abstract][Full Text] [Related]
48. Production and purification of a soluble hydrogenase from Ralstonia eutropha H16 for potential hydrogen fuel cell applications. Jugder BE; Lebhar H; Aguey-Zinsou KF; Marquis CP MethodsX; 2016; 3():242-50. PubMed ID: 27077052 [TBL] [Abstract][Full Text] [Related]
49. [NiFe]-hydrogenase is essential for cyanobacterium Synechocystis sp. PCC 6803 aerobic growth in the dark. De Rosa E; Checchetto V; Franchin C; Bergantino E; Berto P; Szabò I; Giacometti GM; Arrigoni G; Costantini P Sci Rep; 2015 Jul; 5():12424. PubMed ID: 26215212 [TBL] [Abstract][Full Text] [Related]
50. Reduction of unusual iron-sulfur clusters in the H2-sensing regulatory Ni-Fe hydrogenase from Ralstonia eutropha H16. Buhrke T; Löscher S; Lenz O; Schlodder E; Zebger I; Andersen LK; Hildebrandt P; Meyer-Klaucke W; Dau H; Friedrich B; Haumann M J Biol Chem; 2005 May; 280(20):19488-95. PubMed ID: 15764814 [TBL] [Abstract][Full Text] [Related]
51. Rubredoxin-related maturation factor guarantees metal cofactor integrity during aerobic biosynthesis of membrane-bound [NiFe] hydrogenase. Fritsch J; Siebert E; Priebe J; Zebger I; Lendzian F; Teutloff C; Friedrich B; Lenz O J Biol Chem; 2014 Mar; 289(11):7982-93. PubMed ID: 24448806 [TBL] [Abstract][Full Text] [Related]
52. Rational redesign of the ferredoxin-NADP Wiegand K; Winkler M; Rumpel S; Kannchen D; Rexroth S; Hase T; Farès C; Happe T; Lubitz W; Rögner M Biochim Biophys Acta Bioenerg; 2018 Apr; 1859(4):253-262. PubMed ID: 29378161 [TBL] [Abstract][Full Text] [Related]
53. Investigation of the NADH/NAD Tejwani V; Schmitt FJ; Wilkening S; Zebger I; Horch M; Lenz O; Friedrich T Biochim Biophys Acta Bioenerg; 2017 Jan; 1858(1):86-94. PubMed ID: 27816420 [TBL] [Abstract][Full Text] [Related]
54. Spectroscopic insights into the oxygen-tolerant membrane-associated [NiFe] hydrogenase of Ralstonia eutropha H16. Saggu M; Zebger I; Ludwig M; Lenz O; Friedrich B; Hildebrandt P; Lendzian F J Biol Chem; 2009 Jun; 284(24):16264-16276. PubMed ID: 19304663 [TBL] [Abstract][Full Text] [Related]
55. CO synthesized from the central one-carbon pool as source for the iron carbonyl in O2-tolerant [NiFe]-hydrogenase. Bürstel I; Siebert E; Frielingsdorf S; Zebger I; Friedrich B; Lenz O Proc Natl Acad Sci U S A; 2016 Dec; 113(51):14722-14726. PubMed ID: 27930319 [TBL] [Abstract][Full Text] [Related]
56. Impact of the iron-sulfur cluster proximal to the active site on the catalytic function of an O2-tolerant NAD(+)-reducing [NiFe]-hydrogenase. Karstens K; Wahlefeld S; Horch M; Grunzel M; Lauterbach L; Lendzian F; Zebger I; Lenz O Biochemistry; 2015 Jan; 54(2):389-403. PubMed ID: 25517969 [TBL] [Abstract][Full Text] [Related]
57. An analysis of the changes in soluble hydrogenase and global gene expression in Cupriavidus necator (Ralstonia eutropha) H16 grown in heterotrophic diauxic batch culture. Jugder BE; Chen Z; Ping DT; Lebhar H; Welch J; Marquis CP Microb Cell Fact; 2015 Mar; 14():42. PubMed ID: 25880663 [TBL] [Abstract][Full Text] [Related]
58. Implementation of photobiological H2 production: the O 2 sensitivity of hydrogenases. Ghirardi ML Photosynth Res; 2015 Sep; 125(3):383-93. PubMed ID: 26022106 [TBL] [Abstract][Full Text] [Related]
59. Activation of formate hydrogen-lyase via expression of uptake [NiFe]-hydrogenase in Escherichia coli BL21(DE3). Jo BH; Cha HJ Microb Cell Fact; 2015 Sep; 14():151. PubMed ID: 26395073 [TBL] [Abstract][Full Text] [Related]
60. Guiding Principles of Hydrogenase Catalysis Instigated and Clarified by Protein Film Electrochemistry. Armstrong FA; Evans RM; Hexter SV; Murphy BJ; Roessler MM; Wulff P Acc Chem Res; 2016 May; 49(5):884-92. PubMed ID: 27104487 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]