BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37033707)

  • 1. Targeted DNA demethylation of the
    Zheng Y; He R
    MicroPubl Biol; 2023; 2023():. PubMed ID: 37033707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted DNA demethylation of the
    Gallego-Bartolomé J; Gardiner J; Liu W; Papikian A; Ghoshal B; Kuo HY; Zhao JM; Segal DJ; Jacobsen SE
    Proc Natl Acad Sci U S A; 2018 Feb; 115(9):E2125-E2134. PubMed ID: 29444862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transgenerationally Transmitted DNA Demethylation of a Spontaneous Epialleles Using CRISPR/dCas9-TET1cd Targeted Epigenetic Editing in Arabidopsis.
    Wang M; He L; Chen B; Wang Y; Wang L; Zhou W; Zhang T; Cao L; Zhang P; Xie L; Zhang Q
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems.
    Papikian A; Liu W; Gallego-Bartolomé J; Jacobsen SE
    Nat Commun; 2019 Feb; 10(1):729. PubMed ID: 30760722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review on CRISPR/Cas-based epigenetic regulation in plants.
    Jogam P; Sandhya D; Alok A; Peddaboina V; Allini VR; Zhang B
    Int J Biol Macromol; 2022 Oct; 219():1261-1271. PubMed ID: 36057300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted DNA demethylation of the Fgf21 promoter by CRISPR/dCas9-mediated epigenome editing.
    Hanzawa N; Hashimoto K; Yuan X; Kawahori K; Tsujimoto K; Hamaguchi M; Tanaka T; Nagaoka Y; Nishina H; Morita S; Hatada I; Yamada T; Ogawa Y
    Sci Rep; 2020 Mar; 10(1):5181. PubMed ID: 32198422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-based targeting of DNA methylation in
    Ghoshal B; Picard CL; Vong B; Feng S; Jacobsen SE
    Proc Natl Acad Sci U S A; 2021 Jun; 118(23):. PubMed ID: 34074795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter.
    Choudhury SR; Cui Y; Lubecka K; Stefanska B; Irudayaraj J
    Oncotarget; 2016 Jul; 7(29):46545-46556. PubMed ID: 27356740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vivo Tissue-Specific DNA Demethylation in Mouse Liver Through a Hydrodynamic Tail Vein Injection.
    Hashimoto K; Hanzawa N
    Methods Mol Biol; 2023; 2577():269-277. PubMed ID: 36173580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA demethylation in the Arabidopsis genome.
    Penterman J; Zilberman D; Huh JH; Ballinger T; Henikoff S; Fischer RL
    Proc Natl Acad Sci U S A; 2007 Apr; 104(16):6752-7. PubMed ID: 17409185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic Targeting of TET Activity for Targeted Demethylation Using CRISPR/Cas9.
    Nguyen TV; Lister R
    Methods Mol Biol; 2021; 2272():181-194. PubMed ID: 34009614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a luciferase-based reporter of transcriptional gene silencing that enables bidirectional mutant screening in Arabidopsis thaliana.
    Won SY; Li S; Zheng B; Zhao Y; Li D; Zhao X; Yi H; Gao L; Dinh TT; Chen X
    Silence; 2012 Jun; 3(1):6. PubMed ID: 22676624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HMG domain containing SSRP1 is required for DNA demethylation and genomic imprinting in Arabidopsis.
    Ikeda Y; Kinoshita Y; Susaki D; Ikeda Y; Iwano M; Takayama S; Higashiyama T; Kakutani T; Kinoshita T
    Dev Cell; 2011 Sep; 21(3):589-96. PubMed ID: 21920319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution and control of imprinted FWA genes in the genus Arabidopsis.
    Fujimoto R; Kinoshita Y; Kawabe A; Kinoshita T; Takashima K; Nordborg M; Nasrallah ME; Shimizu KK; Kudoh H; Kakutani T
    PLoS Genet; 2008 Apr; 4(4):e1000048. PubMed ID: 18389059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions.
    Morita S; Noguchi H; Horii T; Nakabayashi K; Kimura M; Okamura K; Sakai A; Nakashima H; Hata K; Nakashima K; Hatada I
    Nat Biotechnol; 2016 Oct; 34(10):1060-1065. PubMed ID: 27571369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells.
    Okada M; Kanamori M; Someya K; Nakatsukasa H; Yoshimura A
    Epigenetics Chromatin; 2017; 10():24. PubMed ID: 28503202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA Methylation Editing by CRISPR-guided Excision of 5-Methylcytosine.
    Devesa-Guerra I; Morales-Ruiz T; Pérez-Roldán J; Parrilla-Doblas JT; Dorado-León M; García-Ortiz MV; Ariza RR; Roldán-Arjona T
    J Mol Biol; 2020 Mar; 432(7):2204-2216. PubMed ID: 32087201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNAi of met1 reduces DNA methylation and induces genome-specific changes in gene expression and centromeric small RNA accumulation in Arabidopsis allopolyploids.
    Chen M; Ha M; Lackey E; Wang J; Chen ZJ
    Genetics; 2008 Apr; 178(4):1845-58. PubMed ID: 18430920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenome confrontation triggers immediate reprogramming of DNA methylation and transposon silencing in Arabidopsis thaliana F1 epihybrids.
    Rigal M; Becker C; Pélissier T; Pogorelcnik R; Devos J; Ikeda Y; Weigel D; Mathieu O
    Proc Natl Acad Sci U S A; 2016 Apr; 113(14):E2083-92. PubMed ID: 27001853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats.
    Kinoshita Y; Saze H; Kinoshita T; Miura A; Soppe WJ; Koornneef M; Kakutani T
    Plant J; 2007 Jan; 49(1):38-45. PubMed ID: 17144899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.