These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 37033908)

  • 1. Novel electrotactile brain-computer interface with somatosensory event-related potential based control.
    Savić AM; Novičić M; Ðorđević O; Konstantinović L; Miler-Jerković V
    Front Hum Neurosci; 2023; 17():1096814. PubMed ID: 37033908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Somatosensory Event-Related Potential as an Electrophysiological Correlate of Endogenous Spatial Tactile Attention: Prospects for Electrotactile Brain-Computer Interface for Sensory Training.
    Novičić M; Savić AM
    Brain Sci; 2023 May; 13(5):. PubMed ID: 37239238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrotactile BCI for Top-Down Somatosensory Training: Clinical Feasibility Trial of Online BCI Control in Subacute Stroke Patients.
    Savić AM; Novičić M; Miler-Jerković V; Djordjević O; Konstantinović L
    Biosensors (Basel); 2024 Jul; 14(8):. PubMed ID: 39194597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recording the tactile P300 with the cEEGrid for potential use in a brain-computer interface.
    Eidel M; Pfeiffer M; Ziebell P; Kübler A
    Front Hum Neurosci; 2024; 18():1371631. PubMed ID: 38957693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SSVEP-assisted RSVP brain-computer interface paradigm for multi-target classification.
    Ko LW; Sandeep Vara Sankar D; Huang Y; Lu YC; Shaw S; Jung TP
    J Neural Eng; 2021 Feb; 18(1):. PubMed ID: 33291083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EEG-based brain-computer interfaces exploiting steady-state somatosensory-evoked potentials: a literature review.
    Petit J; Rouillard J; Cabestaing F
    J Neural Eng; 2021 Nov; 18(5):. PubMed ID: 34725311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An online brain-computer interface based on shifting attention to concurrent streams of auditory stimuli.
    Hill NJ; Schölkopf B
    J Neural Eng; 2012 Apr; 9(2):026011. PubMed ID: 22333135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EEG-Based BCI Control Schemes for Lower-Limb Assistive-Robots.
    Tariq M; Trivailo PM; Simic M
    Front Hum Neurosci; 2018; 12():312. PubMed ID: 30127730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Prefrontal Single-Channel EEG Data for Portable Auditory ERP-Based Brain-Computer Interfaces.
    Ogino M; Kanoga S; Muto M; Mitsukura Y
    Front Hum Neurosci; 2019; 13():250. PubMed ID: 31404255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. User-centered design in brain-computer interfaces-a case study.
    Schreuder M; Riccio A; Risetti M; Dähne S; Ramsay A; Williamson J; Mattia D; Tangermann M
    Artif Intell Med; 2013 Oct; 59(2):71-80. PubMed ID: 24076341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Development of a Multicommand Tactile Event-Related Potential-Based Brain-Computer Interface Utilizing a Low-Cost Wearable Vibrotactile Stimulator.
    Borirakarawin M; Siribunyaphat N; Aung ST; Punsawad Y
    Sensors (Basel); 2024 Oct; 24(19):. PubMed ID: 39409418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. What External Variables Affect Sensorimotor Rhythm Brain-Computer Interface (SMR-BCI) Performance?
    Horowitz AJ; Guger C; Korostenskaja M
    HCA Healthc J Med; 2021; 2(3):143-162. PubMed ID: 37427002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing a Novel Tactile P300 Brain-Computer Interface With a Cheeks-Stim Paradigm.
    Jin J; Chen Z; Xu R; Miao Y; Wang X; Jung TP
    IEEE Trans Biomed Eng; 2020 Sep; 67(9):2585-2593. PubMed ID: 31940515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A BCI System Based on Somatosensory Attentional Orientation.
    Yao L; Sheng X; Zhang D; Jiang N; Farina D; Zhu X
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jan; 25(1):78-87. PubMed ID: 27244745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tactile and bone-conduction auditory brain computer interface for vision and hearing impaired users.
    Rutkowski TM; Mori H
    J Neurosci Methods; 2015 Apr; 244():45-51. PubMed ID: 24768575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Role of Transient Target Stimuli in a Steady-State Somatosensory Evoked Potential-Based Brain-Computer Interface Setup.
    Pokorny C; Breitwieser C; Müller-Putz GR
    Front Neurosci; 2016; 10():152. PubMed ID: 27092051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces.
    Lawhern VJ; Solon AJ; Waytowich NR; Gordon SM; Hung CP; Lance BJ
    J Neural Eng; 2018 Oct; 15(5):056013. PubMed ID: 29932424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. See, Hear, or Feel - to Speak: A Versatile Multiple-Choice Functional Near-Infrared Spectroscopy-Brain-Computer Interface Feasible With Visual, Auditory, or Tactile Instructions.
    Nagels-Coune L; Riecke L; Benitez-Andonegui A; Klinkhammer S; Goebel R; De Weerd P; Lührs M; Sorger B
    Front Hum Neurosci; 2021; 15():784522. PubMed ID: 34899223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of tactile, auditory, and visual modality for brain-computer interface use: a case study with a patient in the locked-in state.
    Kaufmann T; Holz EM; Kübler A
    Front Neurosci; 2013; 7():129. PubMed ID: 23898236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.