These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 37033977)

  • 1. A computer vision approach for analyzing label free leukocyte trafficking dynamics on a microvascular mimetic.
    Ahmad SD; Cetin M; Waugh RE; McGrath JL
    Front Immunol; 2023; 14():1140395. PubMed ID: 37033977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sided Stimulation of Endothelial Cells Modulates Neutrophil Trafficking in an In Vitro Sepsis Model.
    Ahmad D; Linares I; Pietropaoli A; Waugh RE; McGrath JL
    Adv Healthc Mater; 2024 Aug; 13(21):e2304338. PubMed ID: 38547536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling a Human Blood-Brain Barrier Co-Culture Using an Ultrathin Silicon Nitride Membrane-Based Microfluidic Device.
    Hudecz D; McCloskey MC; Vergo S; Christensen S; McGrath JL; Nielsen MS
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A silicon nanomembrane platform for the visualization of immune cell trafficking across the human blood-brain barrier under flow.
    Mossu A; Rosito M; Khire T; Li Chung H; Nishihara H; Gruber I; Luke E; Dehouck L; Sallusto F; Gosselet F; McGrath JL; Engelhardt B
    J Cereb Blood Flow Metab; 2019 Mar; 39(3):395-410. PubMed ID: 30565961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-Free and In Situ Identification of Cells via Combinational Machine Learning Models.
    Xue YF; He Y; Wang J; Ren KF; Tian P; Ji J
    Small Methods; 2022 Feb; 6(2):e2101405. PubMed ID: 34954897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer vision for high content screening.
    Kraus OZ; Frey BJ
    Crit Rev Biochem Mol Biol; 2016; 51(2):102-9. PubMed ID: 26806341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reducing leukocyte trafficking preserves hepatic function after sepsis.
    Huynh T; Nguyen N; Keller S; Moore C; Shin MC; McKillop IH
    J Trauma; 2010 Aug; 69(2):360-7. PubMed ID: 20699745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic tracking of rolling leukocytes in vivo.
    Acton ST; Wethmar K; Ley K
    Microvasc Res; 2002 Jan; 63(1):139-48. PubMed ID: 11749081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fine-grained leukocyte classification with deep residual learning for microscopic images.
    Qin F; Gao N; Peng Y; Wu Z; Shen S; Grudtsin A
    Comput Methods Programs Biomed; 2018 Aug; 162():243-252. PubMed ID: 29903491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LLAMA: a robust and scalable machine learning pipeline for analysis of large scale 4D microscopy data: analysis of cell ruffles and filopodia.
    Lefevre JG; Koh YWH; Wall AA; Condon ND; Stow JL; Hamilton NA
    BMC Bioinformatics; 2021 Aug; 22(1):410. PubMed ID: 34412593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The pathogenic relevance of α
    Dong C; Palladino SP; Helton ES; Ubogu EE
    Acta Neuropathol; 2016 Nov; 132(5):739-752. PubMed ID: 27460017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segmentation-Less, Automated, Vascular Vectorization.
    Mihelic SA; Sikora WA; Hassan AM; Williamson MR; Jones TA; Dunn AK
    PLoS Comput Biol; 2021 Oct; 17(10):e1009451. PubMed ID: 34624013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CellSNAP: a fast, accurate algorithm for 3D cell segmentation in quantitative phase imaging.
    Raj P; Paidi SK; Conway L; Chatterjee A; Barman I
    J Biomed Opt; 2024 Jun; 29(Suppl 2):S22706. PubMed ID: 38638450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning approach to peripheral leukocyte recognition.
    Wang Q; Bi S; Sun M; Wang Y; Wang D; Yang S
    PLoS One; 2019; 14(6):e0218808. PubMed ID: 31237896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison and optimization of machine learning methods for automated classification of circulating tumor cells.
    Lannin TB; Thege FI; Kirby BJ
    Cytometry A; 2016 Oct; 89(10):922-931. PubMed ID: 27754580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gap-free segmentation of vascular networks with automatic image processing pipeline.
    Hsu CY; Ghaffari M; Alaraj A; Flannery M; Zhou XJ; Linninger A
    Comput Biol Med; 2017 Mar; 82():29-39. PubMed ID: 28135646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved 3D tracking and automated classification of rodents' behavioral activity using depth-sensing cameras.
    Gerós A; Magalhães A; Aguiar P
    Behav Res Methods; 2020 Oct; 52(5):2156-2167. PubMed ID: 32232737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semi-automated brain tumor segmentation on multi-parametric MRI using regularized non-negative matrix factorization.
    Sauwen N; Acou M; Sima DM; Veraart J; Maes F; Himmelreich U; Achten E; Huffel SV
    BMC Med Imaging; 2017 May; 17(1):29. PubMed ID: 28472943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A user-guided tool for semi-automated cerebral microbleed detection and volume segmentation: Evaluating vascular injury and data labelling for machine learning.
    Morrison MA; Payabvash S; Chen Y; Avadiappan S; Shah M; Zou X; Hess CP; Lupo JM
    Neuroimage Clin; 2018; 20():498-505. PubMed ID: 30140608
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Fantuzzo JA; Mirabella VR; Hamod AH; Hart RP; Zahn JD; Pang ZP
    eNeuro; 2017; 4(6):. PubMed ID: 29218324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.