These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37034305)

  • 1. IDIA: An Integrative Signal Extractor for Data-Independent Acquisition Proteomics.
    Li J; Pan C; Guo X
    Proceedings (IEEE Int Conf Bioinformatics Biomed); 2022 Dec; 2022():266-269. PubMed ID: 37034305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformer-based de novo peptide sequencing for data-independent acquisition mass spectrometry.
    Ebrahimi S; Guo X
    Proc IEEE Int Symp Bioinformatics Bioeng; 2023 Dec; 2023():28-35. PubMed ID: 38665266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformer-based de novo peptide sequencing for data-independent acquisition mass spectrometry.
    Ebrahimi S; Guo X
    ArXiv; 2024 Jun; ():. PubMed ID: 38659639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data Dependent-Independent Acquisition (DDIA) Proteomics.
    Guan S; Taylor PP; Han Z; Moran MF; Ma B
    J Proteome Res; 2020 Aug; 19(8):3230-3237. PubMed ID: 32539411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics.
    Tsou CC; Avtonomov D; Larsen B; Tucholska M; Choi H; Gingras AC; Nesvizhskii AI
    Nat Methods; 2015 Mar; 12(3):258-64, 7 p following 264. PubMed ID: 25599550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Untargeted, spectral library-free analysis of data-independent acquisition proteomics data generated using Orbitrap mass spectrometers.
    Tsou CC; Tsai CF; Teo GC; Chen YJ; Nesvizhskii AI
    Proteomics; 2016 Aug; 16(15-16):2257-71. PubMed ID: 27246681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data-Independent Acquisition Mass Spectrometry-Based Proteomics and Software Tools: A Glimpse in 2020.
    Zhang F; Ge W; Ruan G; Cai X; Guo T
    Proteomics; 2020 Sep; 20(17-18):e1900276. PubMed ID: 32275110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MSLibrarian: Optimized Predicted Spectral Libraries for Data-Independent Acquisition Proteomics.
    Isaksson M; Karlsson C; Laurell T; Kirkeby A; Heusel M
    J Proteome Res; 2022 Feb; 21(2):535-546. PubMed ID: 35042333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein Contaminants Matter: Building Universal Protein Contaminant Libraries for DDA and DIA Proteomics.
    Frankenfield AM; Ni J; Ahmed M; Hao L
    J Proteome Res; 2022 Sep; 21(9):2104-2113. PubMed ID: 35793413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitive Immunopeptidomics by Leveraging Available Large-Scale Multi-HLA Spectral Libraries, Data-Independent Acquisition, and MS/MS Prediction.
    Pak H; Michaux J; Huber F; Chong C; Stevenson BJ; Müller M; Coukos G; Bassani-Sternberg M
    Mol Cell Proteomics; 2021; 20():100080. PubMed ID: 33845167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calibr improves spectral library search for spectrum-centric analysis of data independent acquisition proteomics.
    Wang JH; Choong WK; Chen CT; Sung TY
    Sci Rep; 2022 Feb; 12(1):2045. PubMed ID: 35132134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DIA-MS2pep: a library-free framework for comprehensive peptide identification from data-independent acquisition data.
    Hou J; Wang J; Yang F; Xu T
    Biophys Rep; 2022 Dec; 8(5-6):253-268. PubMed ID: 37287874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diamond: a multi-modal DIA mass spectrometry data processing pipeline.
    Li C; Gao M; Yang W; Zhong C; Yu R
    Bioinformatics; 2021 Apr; 37(2):265-267. PubMed ID: 33416868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PASS-DIA: A Data-Independent Acquisition Approach for Discovery Studies.
    Mun DG; Renuse S; Saraswat M; Madugundu A; Udainiya S; Kim H; Park SR; Zhao H; Nirujogi RS; Na CH; Kannan N; Yates JR; Lee SW; Pandey A
    Anal Chem; 2020 Nov; 92(21):14466-14475. PubMed ID: 33079518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of the Identification Strategy on the Reproducibility of the DDA and DIA Results.
    Fernández-Costa C; Martínez-Bartolomé S; McClatchy DB; Saviola AJ; Yu NK; Yates JR
    J Proteome Res; 2020 Aug; 19(8):3153-3161. PubMed ID: 32510229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dear-DIA
    He Q; Zhong CQ; Li X; Guo H; Li Y; Gao M; Yu R; Liu X; Zhang F; Guo D; Ye F; Guo T; Shuai J; Han J
    Research (Wash D C); 2023; 6():0179. PubMed ID: 37377457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplexed peptide analysis using data-independent acquisition and Skyline.
    Egertson JD; MacLean B; Johnson R; Xuan Y; MacCoss MJ
    Nat Protoc; 2015 Jun; 10(6):887-903. PubMed ID: 25996789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Technical advances in proteomics: new developments in data-independent acquisition.
    Hu A; Noble WS; Wolf-Yadlin A
    F1000Res; 2016; 5():. PubMed ID: 27092249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. nf-encyclopedia: A Cloud-Ready Pipeline for Chromatogram Library Data-Independent Acquisition Proteomics Workflows.
    Allen C; Meinl R; Paez JS; Searle BC; Just S; Pino LK; Fondrie WE
    J Proteome Res; 2023 Aug; 22(8):2743-2749. PubMed ID: 37417926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvements in Mass Spectrometry Assay Library Generation for Targeted Proteomics.
    Teleman J; Hauri S; Malmström J
    J Proteome Res; 2017 Jul; 16(7):2384-2392. PubMed ID: 28516777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.