These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37034669)

  • 1. Adaptable, Turn-On Monobody (ATOM) Fluorescent Biosensors for Multiplexed Detection in Cells.
    Sekhon H; Ha JH; Presti MF; Procopio SB; Mirsky PO; John AM; Loh SN
    bioRxiv; 2023 Mar; ():. PubMed ID: 37034669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptable, turn-on maturation (ATOM) fluorescent biosensors for multiplexed detection in cells.
    Sekhon H; Ha JH; Presti MF; Procopio SB; Jarvis AR; Mirsky PO; John AM; Loh SN
    Nat Methods; 2023 Dec; 20(12):1920-1929. PubMed ID: 37945909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insertion of circularly permuted cyan fluorescent protein into the ligand-binding domain of inositol 1,4,5-trisphosphate receptor for enhanced FRET upon binding of fluorescent ligand.
    Jahan A; Akter MT; Takemoto K; Oura T; Shitara A; Semba S; Nezu A; Suto S; Nagai T; Tanimura A
    Cell Calcium; 2022 Dec; 108():102668. PubMed ID: 36335765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Booster, a Red-Shifted Genetically Encoded Förster Resonance Energy Transfer (FRET) Biosensor Compatible with Cyan Fluorescent Protein/Yellow Fluorescent Protein-Based FRET Biosensors and Blue Light-Responsive Optogenetic Tools.
    Watabe T; Terai K; Sumiyama K; Matsuda M
    ACS Sens; 2020 Mar; 5(3):719-730. PubMed ID: 32101394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development, Characterization, and Structural Analysis of a Genetically Encoded Red Fluorescent Peroxynitrite Biosensor.
    Pang Y; Huang M; Fan Y; Yeh HW; Xiong Y; Ng HL; Ai HW
    ACS Chem Biol; 2023 Jun; 18(6):1388-1397. PubMed ID: 37185019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quenched ligand-directed tosylate reagents for one-step construction of turn-on fluorescent biosensors.
    Tsukiji S; Wang H; Miyagawa M; Tamura T; Takaoka Y; Hamachi I
    J Am Chem Soc; 2009 Jul; 131(25):9046-54. PubMed ID: 19499918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of single- and double-sided inhibition of dual topology fluoride channels by synthetic monobodies.
    Turman DL; Stockbridge RB
    J Gen Physiol; 2017 Apr; 149(4):511-522. PubMed ID: 28258203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro analysis of riboswitch-Spinach aptamer fusions as metabolite-sensing fluorescent biosensors.
    Kellenberger CA; Hammond MC
    Methods Enzymol; 2015; 550():147-72. PubMed ID: 25605385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering a Fluorescent Protein Color Switch Using Entropy-Driven β-Strand Exchange.
    John AM; Sekhon H; Ha JH; Loh SN
    ACS Sens; 2022 Jan; 7(1):263-271. PubMed ID: 35006676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Teaching an old scaffold new tricks: monobodies constructed using alternative surfaces of the FN3 scaffold.
    Koide A; Wojcik J; Gilbreth RN; Hoey RJ; Koide S
    J Mol Biol; 2012 Jan; 415(2):393-405. PubMed ID: 22198408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescent Biosensors Based on Single-Molecule Counting.
    Ma F; Li Y; Tang B; Zhang CY
    Acc Chem Res; 2016 Sep; 49(9):1722-30. PubMed ID: 27583695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Loops in a Single SH2 Domain Are Capable of Encoding the Spectrum of Specificity of the SH2 Family.
    Liu H; Huang H; Voss C; Kaneko T; Qin WT; Sidhu S; Li SS
    Mol Cell Proteomics; 2019 Feb; 18(2):372-382. PubMed ID: 30482845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing fluorescent biosensors using circular permutations of riboswitches.
    Truong J; Hsieh YF; Truong L; Jia G; Hammond MC
    Methods; 2018 Jul; 143():102-109. PubMed ID: 29458090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescent Probes for Lipid Membranes: From the Cell Surface to Organelles.
    Klymchenko AS
    Acc Chem Res; 2023 Jan; 56(1):1-12. PubMed ID: 36533992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective Targeting of SH2 Domain-Phosphotyrosine Interactions of Src Family Tyrosine Kinases with Monobodies.
    Kükenshöner T; Schmit NE; Bouda E; Sha F; Pojer F; Koide A; Seeliger M; Koide S; Hantschel O
    J Mol Biol; 2017 May; 429(9):1364-1380. PubMed ID: 28347651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circularly Permuted Fluorogenic Proteins for the Design of Modular Biosensors.
    Tebo AG; Pimenta FM; Zoumpoulaki M; Kikuti C; Sirkia H; Plamont MA; Houdusse A; Gautier A
    ACS Chem Biol; 2018 Sep; 13(9):2392-2397. PubMed ID: 30088915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploration of fluorescent protein voltage probes based on circularly permuted fluorescent proteins.
    Gautam SG; Perron A; Mutoh H; Knöpfel T
    Front Neuroeng; 2009; 2():14. PubMed ID: 19862342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Live Cell Imaging Using Riboswitch-Spinach tRNA Fusions as Metabolite-Sensing Fluorescent Biosensors.
    Manna S; Kellenberger CA; Hallberg ZF; Hammond MC
    Methods Mol Biol; 2021; 2323():121-140. PubMed ID: 34086278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Live Cell Imaging Using Riboswitch-Spinach tRNA Fusions as Metabolite-Sensing Fluorescent Biosensors.
    Kellenberger CA; Hallberg ZF; Hammond MC
    Methods Mol Biol; 2015; 1316():87-103. PubMed ID: 25967055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing protein conformational changes in living cells by using designer binding proteins: application to the estrogen receptor.
    Koide A; Abbatiello S; Rothgery L; Koide S
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1253-8. PubMed ID: 11818562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.