These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37034879)

  • 41. Intubation and mortality prediction in hospitalized COVID-19 patients using a combination of convolutional neural network-based scoring of chest radiographs and clinical data.
    O'Shea A; Li MD; Mercaldo ND; Balthazar P; Som A; Yeung T; Succi MD; Little BP; Kalpathy-Cramer J; Lee SI
    BJR Open; 2022; 4(1):20210062. PubMed ID: 36105420
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Using machine learning methods to predict nonhome discharge after elective total shoulder arthroplasty.
    Lopez CD; Constant M; Anderson MJJ; Confino JE; Heffernan JT; Jobin CM
    JSES Int; 2021 Jul; 5(4):692-698. PubMed ID: 34223417
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparing an Artificial Neural Network to Logistic Regression for Predicting ED Visit Risk Among Patients With Cancer: A Population-Based Cohort Study.
    Sutradhar R; Barbera L
    J Pain Symptom Manage; 2020 Jul; 60(1):1-9. PubMed ID: 32088358
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Artificial neural networks improve LDCT lung cancer screening: a comparative validation study.
    Hsu YC; Tsai YH; Weng HH; Hsu LS; Tsai YH; Lin YC; Hung MS; Fang YH; Chen CW
    BMC Cancer; 2020 Oct; 20(1):1023. PubMed ID: 33092589
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Predicting prolonged length of hospital stay in older emergency department users: use of a novel analysis method, the Artificial Neural Network.
    Launay CP; Rivière H; Kabeshova A; Beauchet O
    Eur J Intern Med; 2015 Sep; 26(7):478-82. PubMed ID: 26142183
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study.
    Kickingereder P; Isensee F; Tursunova I; Petersen J; Neuberger U; Bonekamp D; Brugnara G; Schell M; Kessler T; Foltyn M; Harting I; Sahm F; Prager M; Nowosielski M; Wick A; Nolden M; Radbruch A; Debus J; Schlemmer HP; Heiland S; Platten M; von Deimling A; van den Bent MJ; Gorlia T; Wick W; Bendszus M; Maier-Hein KH
    Lancet Oncol; 2019 May; 20(5):728-740. PubMed ID: 30952559
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pre-hospital prediction of adverse outcomes in patients with suspected COVID-19: Development, application and comparison of machine learning and deep learning methods.
    Hasan M; Bath PA; Marincowitz C; Sutton L; Pilbery R; Hopfgartner F; Mazumdar S; Campbell R; Stone T; Thomas B; Bell F; Turner J; Biggs K; Petrie J; Goodacre S
    Comput Biol Med; 2022 Dec; 151(Pt A):106024. PubMed ID: 36327887
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Accuracy of Machine Learning Models to Predict Mortality in COVID-19 Infection Using the Clinical and Laboratory Data at the Time of Admission.
    Tabatabaie M; Sarrami AH; Didehdar M; Tasorian B; Shafaat O; Sotoudeh H
    Cureus; 2021 Oct; 13(10):e18768. PubMed ID: 34804648
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Simple Scoring System and Artificial Neural Network for Knee Osteoarthritis Risk Prediction: A Cross-Sectional Study.
    Yoo TK; Kim DW; Choi SB; Oh E; Park JS
    PLoS One; 2016; 11(2):e0148724. PubMed ID: 26859664
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Application of Artificial Neural Networks and Logistic Regression in the Evaluation of Risk for Dry Eye after Vitrectomy.
    Yang WJ; Wu L; Mei ZM; Xiang Y
    J Ophthalmol; 2020; 2020():1024926. PubMed ID: 32377409
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Machine learning algorithms to predict seizure due to acute tramadol poisoning.
    Behnoush B; Bazmi E; Nazari SH; Khodakarim S; Looha MA; Soori H
    Hum Exp Toxicol; 2021 Aug; 40(8):1225-1233. PubMed ID: 33538187
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Diagnostic Efficacy and Clinical Value of Ultrasonography in Difficult Airway Assessment: Based on a Prospective Cohort Study.
    Wu H; Wang H
    Contrast Media Mol Imaging; 2022; 2022():4706438. PubMed ID: 36082062
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A novel machine learning model to predict respiratory failure and invasive mechanical ventilation in critically ill patients suffering from COVID-19.
    Bendavid I; Statlender L; Shvartser L; Teppler S; Azullay R; Sapir R; Singer P
    Sci Rep; 2022 Jun; 12(1):10573. PubMed ID: 35732690
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development and Validation of Unplanned Extubation Prediction Models Using Intensive Care Unit Data: Retrospective, Comparative, Machine Learning Study.
    Hur S; Min JY; Yoo J; Kim K; Chung CR; Dykes PC; Cha WC
    J Med Internet Res; 2021 Aug; 23(8):e23508. PubMed ID: 34382940
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Predicting mortality in SARS-COV-2 (COVID-19) positive patients in the inpatient setting using a novel deep neural network.
    Naseem M; Arshad H; Hashmi SA; Irfan F; Ahmed FS
    Int J Med Inform; 2021 Oct; 154():104556. PubMed ID: 34455118
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identifying factors related to mortality of hospitalized COVID-19 patients using machine learning methods.
    Hamidi F; Hamishehkar H; Azari Markid PP; Sarbakhsh P
    Heliyon; 2024 Aug; 10(15):e35561. PubMed ID: 39170355
    [TBL] [Abstract][Full Text] [Related]  

  • 57. COVID-19 Time of Intubation Mortality Evaluation (C-TIME): A system for predicting mortality of patients with COVID-19 pneumonia at the time they require mechanical ventilation.
    Raschke RA; Rangan P; Agarwal S; Uppalapu S; Sher N; Curry SC; Heise CW
    PLoS One; 2022; 17(7):e0270193. PubMed ID: 35793312
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases.
    Peng S; Huang J; Liu X; Deng J; Sun C; Tang J; Chen H; Cao W; Wang W; Duan X; Luo X; Peng S
    Front Cardiovasc Med; 2022; 9():994359. PubMed ID: 36312291
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Prediction model for the risk of osteoporosis incorporating factors of disease history and living habits in physical examination of population in Chongqing, Southwest China: based on artificial neural network.
    Wang Y; Wang L; Sun Y; Wu M; Ma Y; Yang L; Meng C; Zhong L; Hossain MA; Peng B
    BMC Public Health; 2021 May; 21(1):991. PubMed ID: 34039329
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Time series prediction of under-five mortality rates for Nigeria: comparative analysis of artificial neural networks, Holt-Winters exponential smoothing and autoregressive integrated moving average models.
    Adeyinka DA; Muhajarine N
    BMC Med Res Methodol; 2020 Dec; 20(1):292. PubMed ID: 33267817
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.