These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37035021)

  • 1. Manipulating Hubbard-type Coulomb blockade effect of metallic wires embedded in an insulator.
    Yang X; Gu ZL; Wang H; Xian JJ; Meng S; Nagaosa N; Zhang WH; Liu HW; Ling ZH; Fan K; Zhang ZM; Qin L; Zhang ZH; Liang Y; Li JX; Fu YS
    Natl Sci Rev; 2023 Mar; 10(3):nwac210. PubMed ID: 37035021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualization of Confined Electrons at Grain Boundaries in a Monolayer Charge-Density-Wave Metal.
    Chen Y; Zhang Y; Wang W; Song X; Jia LG; Zhang C; Zhou L; Han X; Yang HX; Liu LW; Si C; Gao HJ; Wang YL
    Adv Sci (Weinh); 2024 Oct; 11(37):e2306171. PubMed ID: 37984874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sub-gap Fano resonances in a topological superconducting wire with on-site Coulomb interactions.
    Stefański P
    J Phys Condens Matter; 2021 Sep; 33(46):. PubMed ID: 34388745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A semi exact solution for a metallic phase in a Holstein-Hubbard chain at half filling with Gaussian anharmonic phonons.
    Debnath D; Malik MZ; Chatterjee A
    Sci Rep; 2021 Jun; 11(1):12305. PubMed ID: 34112876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Observation of One-Dimensional Peierls-type Charge Density Wave in Twin Boundaries of Monolayer MoTe
    Wang L; Wu Y; Yu Y; Chen A; Li H; Ren W; Lu S; Ding S; Yang H; Xue QK; Li FS; Wang G
    ACS Nano; 2020 Jul; 14(7):8299-8306. PubMed ID: 32579335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spin-Polarized Nematic Order, Quantum Valley Hall States, and Field-Tunable Topological Transitions in Twisted Multilayer Graphene Systems.
    Zhang S; Dai X; Liu J
    Phys Rev Lett; 2022 Jan; 128(2):026403. PubMed ID: 35089764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strength of the effective Coulomb interaction at metal and insulator surfaces.
    Şaşıoğlu E; Friedrich C; Blügel S
    Phys Rev Lett; 2012 Oct; 109(14):146401. PubMed ID: 23083261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coulomb engineering of two-dimensional Mott materials.
    van Loon EGCP; Schüler M; Springer D; Sangiovanni G; Tomczak JM; Wehling TO
    NPJ 2D Mater Appl; 2023; 7(1):47. PubMed ID: 38665482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cascade of electronic transitions in magic-angle twisted bilayer graphene.
    Wong D; Nuckolls KP; Oh M; Lian B; Xie Y; Jeon S; Watanabe K; Taniguchi T; Bernevig BA; Yazdani A
    Nature; 2020 Jun; 582(7811):198-202. PubMed ID: 32528095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlated insulated phase suggests bond order between band and mott insulators in two dimensions.
    Kancharla SS; Dagotto E
    Phys Rev Lett; 2007 Jan; 98(1):016402. PubMed ID: 17358494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge Density Modulation and the Luttinger Liquid State in MoSe
    Xia Y; Zhang J; Jin Y; Ho W; Xu H; Xie M
    ACS Nano; 2020 Aug; 14(8):10716-10722. PubMed ID: 32806039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Coulomb Blockade on the Charge Transport through the Topological States of Finite Armchair Graphene Nanoribbons and Heterostructures.
    Kuo DMT
    Nanomaterials (Basel); 2023 May; 13(11):. PubMed ID: 37299660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum Confined Tomonaga-Luttinger Liquid in Mo
    Xia Y; Wang B; Zhang J; Jin Y; Tian H; Ho W; Xu H; Jin C; Xie M
    Nano Lett; 2020 Mar; 20(3):2094-2099. PubMed ID: 32092277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manipulating single excess electrons in monolayer transition metal dihalide.
    Cai M; Miao MP; Liang Y; Jiang Z; Liu ZY; Zhang WH; Liao X; Zhu LF; West D; Zhang S; Fu YS
    Nat Commun; 2023 Jun; 14(1):3691. PubMed ID: 37344472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional Mott-Hubbard electrons in an artificial honeycomb lattice.
    Singha A; Gibertini M; Karmakar B; Yuan S; Polini M; Vignale G; Katsnelson MI; Pinczuk A; Pfeiffer LN; West KW; Pellegrini V
    Science; 2011 Jun; 332(6034):1176-9. PubMed ID: 21636768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What about U on surfaces? Extended Hubbard models for adatom systems from first principles.
    Hansmann P; Vaugier L; Jiang H; Biermann S
    J Phys Condens Matter; 2013 Mar; 25(9):094005. PubMed ID: 23400014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Switching between Mott-Hubbard and Hund Physics in Moiré Quantum Simulators.
    Ryee S; Wehling TO
    Nano Lett; 2023 Jan; 23(2):573-579. PubMed ID: 36622289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Many-Body Physics in Small Systems: Observing the Onset and Saturation of Correlation in Linear Atomic Chains.
    Townsend E; Neuman T; Debrecht A; Aizpurua J; Bryant G
    Phys Rev B; 2021 May; 103(19):. PubMed ID: 36452917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice.
    Chen G; Sharpe AL; Gallagher P; Rosen IT; Fox EJ; Jiang L; Lyu B; Li H; Watanabe K; Taniguchi T; Jung J; Shi Z; Goldhaber-Gordon D; Zhang Y; Wang F
    Nature; 2019 Aug; 572(7768):215-219. PubMed ID: 31316203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incommensurate charge correlation and phase diagram of the one-dimensional superlattice Hubbard model at half-filling.
    Duan CB; Wang WZ
    J Phys Condens Matter; 2010 Sep; 22(34):345601. PubMed ID: 21403257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.