These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 37035028)

  • 61. Comparable osteogenic capacity of mesenchymal stem or stromal cells derived from human amnion membrane and bone marrow.
    Ghasemzadeh M; Hosseini E; Ahmadi M; Kamalizad M; Amirizadeh N
    Cytotechnology; 2018 Apr; 70(2):729-739. PubMed ID: 29305674
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Bone Marrow Mesenchymal Stromal Cells from Clinical Scale Culture: In Vitro Evaluation of Their Differentiation, Hematopoietic Support, and Immunosuppressive Capacities.
    Fajardo-Orduña GR; Mayani H; Castro-Manrreza ME; Flores-Figueroa E; Flores-Guzmán P; Arriaga-Pizano L; Piña-Sánchez P; Hernández-Estévez E; Castell-Rodríguez AE; Chávez-Rueda AK; Legorreta-Haquet MV; Santiago-Osorio E; Montesinos JJ
    Stem Cells Dev; 2016 Sep; 25(17):1299-310. PubMed ID: 27462977
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Proteomic analysis of porcine mesenchymal stem cells derived from bone marrow and umbilical cord: implication of the proteins involved in the higher migration capability of bone marrow mesenchymal stem cells.
    Huang L; Niu C; Willard B; Zhao W; Liu L; He W; Wu T; Yang S; Feng S; Mu Y; Zheng L; Li K
    Stem Cell Res Ther; 2015 Apr; 6(1):77. PubMed ID: 25889491
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Effects of hypoxia on osteogenic differentiation of mesenchymal stromal cells used as a cell therapy for avascular necrosis of the femoral head.
    Ciapetti G; Granchi D; Fotia C; Savarino L; Dallari D; Del Piccolo N; Donati DM; Baldini N
    Cytotherapy; 2016 Sep; 18(9):1087-99. PubMed ID: 27421741
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Impact of the source and serial passaging of goat mesenchymal stem cells on osteogenic differentiation potential: implications for bone tissue engineering.
    Elkhenany H; Amelse L; Caldwell M; Abdelwahed R; Dhar M
    J Anim Sci Biotechnol; 2016; 7():16. PubMed ID: 26949532
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Functional module analysis reveals differential osteogenic and stemness potentials in human mesenchymal stem cells from bone marrow and Wharton's jelly of umbilical cord.
    Hsieh JY; Fu YS; Chang SJ; Tsuang YH; Wang HW
    Stem Cells Dev; 2010 Dec; 19(12):1895-910. PubMed ID: 20367285
    [TBL] [Abstract][Full Text] [Related]  

  • 67. In Vitro Effects of Wistar Rat Prenatal and Postnatal Cerebrospinal Fluid on Neural Differentiation and P roliferation of Mesenchymal Stromal Cells Derived from Bone Marrow.
    Shokohi R; Nabiuni M; Irian S; Miyan JA
    Cell J; 2018 Jan; 19(4):537-544. PubMed ID: 29105387
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Differential expression of surface markers in mouse bone marrow mesenchymal stromal cell subpopulations with distinct lineage commitment.
    Rostovskaya M; Anastassiadis K
    PLoS One; 2012; 7(12):e51221. PubMed ID: 23236457
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Comparison of Mesenchymal Stromal Cells Isolated from Murine Adipose Tissue and Bone Marrow in the Treatment of Spinal Cord Injury.
    Takahashi A; Nakajima H; Uchida K; Takeura N; Honjoh K; Watanabe S; Kitade M; Kokubo Y; Johnson WEB; Matsumine A
    Cell Transplant; 2018 Jul; 27(7):1126-1139. PubMed ID: 29947256
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Comparative characteristic study from bone marrow-derived mesenchymal stem cells.
    Purwaningrum M; Jamilah NS; Purbantoro SD; Sawangmake C; Nantavisai S
    J Vet Sci; 2021 Nov; 22(6):e74. PubMed ID: 34697921
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Ginkgo biloba extract promotes osteogenic differentiation of human bone marrow mesenchymal stem cells in a pathway involving Wnt/β-catenin signaling.
    Gu Q; Chen C; Zhang Z; Wu Z; Fan X; Zhang Z; Di W; Shi L
    Pharmacol Res; 2015 Jul; 97():70-8. PubMed ID: 25917209
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Osteogenic differentiation and proliferation potentials of human bone marrow and umbilical cord-derived mesenchymal stem cells on the 3D-printed hydroxyapatite scaffolds.
    Meesuk L; Suwanprateeb J; Thammarakcharoen F; Tantrawatpan C; Kheolamai P; Palang I; Tantikanlayaporn D; Manochantr S
    Sci Rep; 2022 Nov; 12(1):19509. PubMed ID: 36376498
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Human embryonic stem cell-derived mesenchymal stem cell seeding on calcium phosphate cement-chitosan-RGD scaffold for bone repair.
    Chen W; Zhou H; Weir MD; Tang M; Bao C; Xu HH
    Tissue Eng Part A; 2013 Apr; 19(7-8):915-27. PubMed ID: 23092172
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Characterization of platelet lysate cultured mesenchymal stromal cells and their potential use in tissue-engineered osteogenic devices for the treatment of bone defects.
    Salvadè A; Della Mina P; Gaddi D; Gatto F; Villa A; Bigoni M; Perseghin P; Serafini M; Zatti G; Biondi A; Biagi E
    Tissue Eng Part C Methods; 2010 Apr; 16(2):201-14. PubMed ID: 19469694
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Bone and cartilage regeneration with the use of umbilical cord mesenchymal stem cells.
    Klontzas ME; Kenanidis EI; Heliotis M; Tsiridis E; Mantalaris A
    Expert Opin Biol Ther; 2015; 15(11):1541-52. PubMed ID: 26176327
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The Effects of BMP-2, miR-31, miR-106a, and miR-148a on Osteogenic Differentiation of MSCs Derived from Amnion in Comparison with MSCs Derived from the Bone Marrow.
    Manochantr S; Marupanthorn K; Tantrawatpan C; Kheolamai P; Tantikanlayaporn D; Sanguanjit P
    Stem Cells Int; 2017; 2017():7257628. PubMed ID: 29348760
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Vertebral body versus iliac crest bone marrow as a source of multipotential stromal cells: Comparison of processing techniques, tri-lineage differentiation and application on a scaffold for spine fusion.
    Fragkakis EM; El-Jawhari JJ; Dunsmuir RA; Millner PA; Rao AS; Henshaw KT; Pountos I; Jones E; Giannoudis PV
    PLoS One; 2018; 13(5):e0197969. PubMed ID: 29795650
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Proliferative and chondrogenic potential of mesenchymal stromal cells from pluripotent and bone marrow cells.
    Sfougataki I; Varela I; Stefanaki K; Karagiannidou A; Roubelakis MG; Kalodimou V; Papathanasiou I; Traeger-Synodinos J; Kitsiou-Tzeli S; Kanavakis E; Kitra V; Tsezou A; Tzetis M; Goussetis E
    Histol Histopathol; 2020 Dec; 35(12):1415-1426. PubMed ID: 32959885
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Different Sources of Mesenchymal Stem Cells for Tissue Regeneration: A Guide to Identifying the Most Favorable One in Orthopedics and Dentistry Applications.
    Costela-Ruiz VJ; Melguizo-Rodríguez L; Bellotti C; Illescas-Montes R; Stanco D; Arciola CR; Lucarelli E
    Int J Mol Sci; 2022 Jun; 23(11):. PubMed ID: 35683035
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Similarities and differences between porcine mandibular and limb bone marrow mesenchymal stem cells.
    Lloyd B; Tee BC; Headley C; Emam H; Mallery S; Sun Z
    Arch Oral Biol; 2017 May; 77():1-11. PubMed ID: 28135571
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.