BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37035062)

  • 1. Differentiation of Andean and Mesoamerican accessions in a proposed core collection of grain amaranths.
    Blair MW; Londoño JM; Buitrago-Bitar MA; Wu X; Brenner DM
    Front Plant Sci; 2023; 14():1144681. PubMed ID: 37035062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship of Cultivated Grain Amaranth Species and Wild Relative Accessions.
    Thapa R; Edwards M; Blair MW
    Genes (Basel); 2021 Nov; 12(12):. PubMed ID: 34946796
    [No Abstract]   [Full Text] [Related]  

  • 3. Diversity in Grain Amaranths and Relatives Distinguished by Genotyping by Sequencing (GBS).
    Wu X; Blair MW
    Front Plant Sci; 2017; 8():1960. PubMed ID: 29204149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of phylogenetic relationships and genome size evolution of the Amaranthus genus using GBS indicates the ancestors of an ancient crop.
    Stetter MG; Schmid KJ
    Mol Phylogenet Evol; 2017 Apr; 109():80-92. PubMed ID: 28057554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PopAmaranth: a population genetic genome browser for grain amaranths and their wild relatives.
    Gonçalves-Dias J; Stetter MG
    G3 (Bethesda); 2021 Jul; 11(7):. PubMed ID: 33822034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic and phenotypic evidence for an incomplete domestication of South American grain amaranth (Amaranthus caudatus).
    Stetter MG; Müller T; Schmid KJ
    Mol Ecol; 2017 Feb; 26(3):871-886. PubMed ID: 28019043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allozyme variation and evolutionary relationships of grain amaranths (Amaranthus spp.).
    Hauptli H; Jain S
    Theor Appl Genet; 1984 Dec; 69(2):153-65. PubMed ID: 24253706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of phylogenetic relationships of grain amaranths and their wild relatives (Amaranthus; Amaranthaceae) using internal transcribed spacer, amplified fragment length polymorphism, and double-primer fluorescent intersimple sequence repeat markers.
    Xu F; Sun M
    Mol Phylogenet Evol; 2001 Dec; 21(3):372-87. PubMed ID: 11741380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of SSR diversity from wild types to U.S. advanced cultivars in the Andean and Mesoamerican domestications of common bean (Phaseolus vulgaris).
    Gioia T; Logozzo G; Marzario S; Spagnoletti Zeuli P; Gepts P
    PLoS One; 2019; 14(1):e0211342. PubMed ID: 30703134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-Cot DNA sequences for fingerprinting analysis of germplasm diversity and relationships in Amaranthus.
    Sun M; Chen H; Leung FC
    Theor Appl Genet; 1999 Aug; 99(3-4):464-72. PubMed ID: 22665179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Agrobacterium rhizogenes-mediated transformation of grain (Amaranthus hypochondriacus) and leafy (A. hybridus) amaranths.
    Castellanos-Arévalo AP; Estrada-Luna AA; Cabrera-Ponce JL; Valencia-Lozano E; Herrera-Ubaldo H; de Folter S; Blanco-Labra A; Délano-Frier JP
    Plant Cell Rep; 2020 Sep; 39(9):1143-1160. PubMed ID: 32430681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A rapid and reliable PCR-restriction fragment length polymorphism (RFLP) marker for the identification of Amaranthus cruentus species.
    Park YJ; Nishikawa T; Matsushima K; Minami M; Nemoto K
    Breed Sci; 2014 Dec; 64(4):422-6. PubMed ID: 25914599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid identification of Amaranthus caudatus and Amaranthus hypochondriacus by sequencing and PCR-RFLP analysis of two starch synthase genes.
    Park YJ; Nishikawa T
    Genome; 2012 Aug; 55(8):623-8. PubMed ID: 22892013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution and improvement of cultivated amaranths : VI. Cytogenetic relationships in grain types.
    Pal M; Khoshoo TN
    Theor Appl Genet; 1973 Jan; 43(5):242-51. PubMed ID: 24425076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amaranthus grain as a new ingredient in diets for dairy cows: productive, qualitative, and in vitro fermentation traits.
    Calabrò S; Oteri M; Vastolo A; Cutrignelli MI; Todaro M; Chiofalo B; Gresta F
    J Sci Food Agric; 2022 Aug; 102(10):4121-4130. PubMed ID: 34997604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The complete chloroplast genome sequences for four Amaranthus species (Amaranthaceae).
    Chaney L; Mangelson R; Ramaraj T; Jellen EN; Maughan PJ
    Appl Plant Sci; 2016 Sep; 4(9):. PubMed ID: 27672525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microsatellite marker diversity in common bean (Phaseolus vulgaris L.).
    Blair MW; Giraldo MC; Buendía HF; Tovar E; Duque MC; Beebe SE
    Theor Appl Genet; 2006 Jun; 113(1):100-9. PubMed ID: 16614831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic diversity analysis and marker-trait associations in Amaranthus species.
    Jamalluddin N; Massawe FJ; Mayes S; Ho WK; Symonds RC
    PLoS One; 2022; 17(5):e0267752. PubMed ID: 35551526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The draft genome and transcriptome of Amaranthus hypochondriacus: a C4 dicot producing high-lysine edible pseudo-cereal.
    Sunil M; Hariharan AK; Nayak S; Gupta S; Nambisan SR; Gupta RP; Panda B; Choudhary B; Srinivasan S
    DNA Res; 2014 Dec; 21(6):585-602. PubMed ID: 25071079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of Chloroplast Phylogenomics to Resolve Species Relationships Within the Plant Genus Amaranthus.
    Viljoen E; Odeny DA; Coetzee MPA; Berger DK; Rees DJG
    J Mol Evol; 2018 Apr; 86(3-4):216-239. PubMed ID: 29556741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.