BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 37035085)

  • 1. Different photosynthetic inorganic carbon utilization strategies in the heteroblastic leaves of an aquatic plant
    Liao Z; Li P; Zhou J; Li W; Jiang HS
    Front Plant Sci; 2023; 14():1142848. PubMed ID: 37035085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses of Leaf Anatomy and CO
    Huang W; Han S; Xing Z; Li W
    Front Plant Sci; 2020; 11():1261. PubMed ID: 32922428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photosynthetic acclimation of terrestrial and submerged leaves in the amphibious plant
    Horiguchi G; Nemoto K; Yokoyama T; Hirotsu N
    AoB Plants; 2019 Apr; 11(2):plz009. PubMed ID: 30911367
    [No Abstract]   [Full Text] [Related]  

  • 4. Transition From Proto-Kranz-Type Photosynthesis to HCO
    Horiguchi G; Matsumoto K; Nemoto K; Inokuchi M; Hirotsu N
    Front Plant Sci; 2021; 12():675507. PubMed ID: 34220895
    [No Abstract]   [Full Text] [Related]  

  • 5. Structural basis for C4 photosynthesis without Kranz anatomy in leaves of the submerged freshwater plant Ottelia alismoides.
    Han S; Maberly SC; Gontero B; Xing Z; Li W; Jiang H; Huang W
    Ann Bot; 2020 May; 125(6):869-879. PubMed ID: 31942934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlorophyll fluorescence of submerged and floating leaves of the aquatic resurrection plant Chamaegigas intrepidus.
    Woitke M; Hartung W; Gimmler H; Heilmeier H
    Funct Plant Biol; 2004 Feb; 31(1):53-62. PubMed ID: 32688880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperation of an external carbonic anhydrase and HCO3- transporter supports underwater photosynthesis in submerged leaves of the amphibious plant Hygrophila difformis.
    Horiguchi G; Oyama R; Akabane T; Suzuki N; Katoh E; Mizokami Y; Noguchi K; Hirotsu N
    Ann Bot; 2024 Apr; 133(2):287-304. PubMed ID: 37832038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of CO
    Huang W; Jin Q; Yin L; Li W
    Ecotoxicol Environ Saf; 2020 Oct; 202():110955. PubMed ID: 32800229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flood tolerance of Glyceria fluitans: the importance of cuticle hydrophobicity, permeability and leaf gas films for underwater gas exchange.
    Konnerup D; Pedersen O
    Ann Bot; 2017 Oct; 120(4):521-528. PubMed ID: 29059317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different CO
    Huang WM; Shao H; Zhou SN; Zhou Q; Fu WL; Zhang T; Jiang HS; Li W; Gontero B; Maberly SC
    Photosynth Res; 2018 Nov; 138(2):219-232. PubMed ID: 30078074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inorganic carbon utilization: A target of silver nanoparticle toxicity on a submerged macrophyte.
    Wang W; Yuan L; Zhou J; Zhu X; Liao Z; Yin L; Li W; Jiang HS
    Environ Pollut; 2023 Feb; 318():120906. PubMed ID: 36549447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial electron transport protects floating leaves of long leaf pondweed (Potamogeton nodosus Poir) against photoinhibition: comparison with submerged leaves.
    Shabnam N; Sharmila P; Sharma A; Strasser RJ; Govindjee ; Pardha-Saradhi P
    Photosynth Res; 2015 Aug; 125(1-2):305-19. PubMed ID: 25366828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freshwater angiosperm carbon concentrating mechanisms: processes and patterns.
    Maberly SC; Madsen TV
    Funct Plant Biol; 2002 Apr; 29(3):393-405. PubMed ID: 32689484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Analysis of Leaf Traits of Eight
    Cao Y; Liu Y; Ndirangu L; Li W; Xian L; Jiang HS
    Front Plant Sci; 2018; 9():1938. PubMed ID: 30666267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Jack of all trades - C4 photosynthesis, CAM and HCO3- use in the same tissue. A commentary on: 'Structural basis for C4 photosynthesis without Kranz anatomy in leaves of the submerged freshwater plant Ottelia alismoides'.
    Pedersen O
    Ann Bot; 2020 May; 125(6):iv-vi. PubMed ID: 32400864
    [No Abstract]   [Full Text] [Related]  

  • 16. Alterations in Rubisco activity and in stomatal behavior induce a daily rhythm in photosynthesis of aerial leaves in the amphibious-plant Nuphar lutea.
    Snir A; Gurevitz M; Marcus Y
    Photosynth Res; 2006 Dec; 90(3):233-42. PubMed ID: 17286188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photosynthetic acclimation and resource use by the C3 and C4 subspecies of Alloteropsis semialata in low CO2 atmospheres.
    Ripley BS; Cunniff J; Osborne CP
    Glob Chang Biol; 2013 Mar; 19(3):900-10. PubMed ID: 23504846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and photosynthetic re-acclimation to low light in C4 maize leaves that developed under high light.
    Yabiku T; Ueno O
    Ann Bot; 2019 Oct; 124(3):437-445. PubMed ID: 31127287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparisons of δ
    Osmond CB; Valaane N; Haslam SM; Uotila P; Roksandic Z
    Oecologia; 1981 Aug; 50(1):117-124. PubMed ID: 28310072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photosynthetic strategies in leaves and stems of Egeria densa.
    Rascio N; Mariani P; Tommasini E; Bodner M; Larcher W
    Planta; 1991 Oct; 185(3):297-303. PubMed ID: 24186409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.