These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 37035137)

  • 1. The combination of radiomics features and VASARI standard to predict glioma grade.
    You W; Mao Y; Jiao X; Wang D; Liu J; Lei P; Liao W
    Front Oncol; 2023; 13():1083216. PubMed ID: 37035137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beyond invasive biopsies: using VASARI MRI features to predict grade and molecular parameters in gliomas.
    Setyawan NH; Choridah L; Nugroho HA; Malueka RG; Dwianingsih EK
    Cancer Imaging; 2024 Jan; 24(1):3. PubMed ID: 38167551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Qualitative and Quantitative MRI Analysis in IDH1 Genotype Prediction of Lower-Grade Gliomas: A Machine Learning Approach.
    Cao M; Suo S; Zhang X; Wang X; Xu J; Yang W; Zhou Y
    Biomed Res Int; 2021; 2021():1235314. PubMed ID: 33553421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing and validating a deep learning and radiomic model for glioma grading using multiplanar reconstructed magnetic resonance contrast-enhanced T1-weighted imaging: a robust, multi-institutional study.
    Ding J; Zhao R; Qiu Q; Chen J; Duan J; Cao X; Yin Y
    Quant Imaging Med Surg; 2022 Feb; 12(2):1517-1528. PubMed ID: 35111644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiomics and Qualitative Features From Multiparametric MRI Predict Molecular Subtypes in Patients With Lower-Grade Glioma.
    Sun C; Fan L; Wang W; Wang W; Liu L; Duan W; Pei D; Zhan Y; Zhao H; Sun T; Liu Z; Hong X; Wang X; Guo Y; Li W; Cheng J; Li Z; Liu X; Zhang Z; Yan J
    Front Oncol; 2021; 11():756828. PubMed ID: 35127472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ten Years of VASARI Glioma Features: Systematic Review and Meta-Analysis of Their Impact and Performance.
    Azizova A; Prysiazhniuk Y; Wamelink IJHG; Petr J; Barkhof F; Keil VC
    AJNR Am J Neuroradiol; 2024 Jun; ():. PubMed ID: 38937115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preoperative Magnetic Resonance Imaging Radiomics for Predicting Early Recurrence of Glioblastoma.
    Wang J; Yi X; Fu Y; Pang P; Deng H; Tang H; Han Z; Li H; Nie J; Gong G; Hu Z; Tan Z; Chen BT
    Front Oncol; 2021; 11():769188. PubMed ID: 34778086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MRI-based intratumoral and peritumoral radiomics for preoperative prediction of glioma grade: a multicenter study.
    Tan R; Sui C; Wang C; Zhu T
    Front Oncol; 2024; 14():1401977. PubMed ID: 38803534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preoperative prediction for lauren type of gastric cancer: A radiomics nomogram analysis based on CT images and clinical features.
    Sun Z; Jin L; Zhang S; Duan S; Xing W; Hu S
    J Xray Sci Technol; 2021; 29(4):675-686. PubMed ID: 34024809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiparametric MR radiomics in brain glioma: models comparation to predict biomarker status.
    He J; Ren J; Niu G; Liu A; Wu Q; Xie S; Ma X; Li B; Wang P; Shen J; Wu J; Gao Y
    BMC Med Imaging; 2022 Aug; 22(1):137. PubMed ID: 35931979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MR-Based Radiomics Predicts CDK6 Expression and Prognostic Value in High-grade Glioma.
    Sun C; Jiang C; Wang X; Ma S; Zhang D; Jia W
    Acad Radiol; 2024 Jul; ():. PubMed ID: 38964985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a nomograph integrating radiomics and deep features based on MRI to predict the prognosis of high grade Gliomas.
    Wang Y; Shao Q; Luo S; Fu R
    Math Biosci Eng; 2021 Sep; 18(6):8084-8095. PubMed ID: 34814290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A radiomics feature-based nomogram to predict telomerase reverse transcriptase promoter mutation status and the prognosis of lower-grade gliomas.
    Lu J; Li X; Li H
    Clin Radiol; 2022 Aug; 77(8):e560-e567. PubMed ID: 35595562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning-based radiomic, clinical and semantic feature analysis for predicting overall survival and MGMT promoter methylation status in patients with glioblastoma.
    Lu Y; Patel M; Natarajan K; Ughratdar I; Sanghera P; Jena R; Watts C; Sawlani V
    Magn Reson Imaging; 2020 Dec; 74():161-170. PubMed ID: 32980505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving survival prediction of high-grade glioma via machine learning techniques based on MRI radiomic, genetic and clinical risk factors.
    Tan Y; Mu W; Wang XC; Yang GQ; Gillies RJ; Zhang H
    Eur J Radiol; 2019 Nov; 120():108609. PubMed ID: 31606714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nomogram incorporating preoperative MRI-VASARI features for differentiating intracranial extraventricular ependymoma from glioblastoma.
    Yao Y; Fu Y; Zhou G; Wang X; Li L; Mao Y; Wang J; Tan Z; Jiang M; Yi X; Chen BT
    Quant Imaging Med Surg; 2024 Mar; 14(3):2255-2266. PubMed ID: 38545063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiomics Nomogram Building From Multiparametric MRI to Predict Grade in Patients With Glioma: A Cohort Study.
    Wang Q; Li Q; Mi R; Ye H; Zhang H; Chen B; Li Y; Huang G; Xia J
    J Magn Reson Imaging; 2019 Mar; 49(3):825-833. PubMed ID: 30260592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinically Available and Reproducible Prediction Models for IDH and CDKN2A/B Gene Status in Adult-type Diffuse Gliomas.
    Zhu M; Han F; Gao J; Yang J; Yin L; Du Z; Zhang J
    Acad Radiol; 2024 Jun; ():. PubMed ID: 38944632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noninvasive Evaluation of the Notch Signaling Pathway via Radiomic Signatures Based on Multiparametric MRI in Association With Biological Functions of Patients With Glioma: A Multi-institutional Study.
    Shen N; Lv W; Li S; Liu D; Xie Y; Zhang J; Zhang J; Jiang J; Jiang R; Zhu W
    J Magn Reson Imaging; 2023 Mar; 57(3):884-896. PubMed ID: 35929909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fusion Radiomics Features from Conventional MRI Predict MGMT Promoter Methylation Status in Lower Grade Gliomas.
    Jiang C; Kong Z; Liu S; Feng S; Zhang Y; Zhu R; Chen W; Wang Y; Lyu Y; You H; Zhao D; Wang R; Wang Y; Ma W; Feng F
    Eur J Radiol; 2019 Dec; 121():108714. PubMed ID: 31704598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.