These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37035577)

  • 1. A Discrete Elements Study of the Frictional Behavior of Fault Gouges.
    Papachristos E; Stefanou I; Sulem J
    J Geophys Res Solid Earth; 2023 Jan; 128(1):e2022JB025209. PubMed ID: 37035577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Healing Behavior of Simulated Fault Gouges From the Groningen Gas Field and Implications for Induced Fault Reactivation.
    Hunfeld LB; Chen J; Hol S; Niemeijer AR; Spiers CJ
    J Geophys Res Solid Earth; 2020 Jul; 125(7):e2019JB018790. PubMed ID: 32728508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microphysical Modeling of Carbonate Fault Friction at Slip Rates Spanning the Full Seismic Cycle.
    Chen J; Niemeijer AR; Spiers CJ
    J Geophys Res Solid Earth; 2021 Mar; 126(3):e2020JB021024. PubMed ID: 33868888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is complex fault zone behaviour a reflection of rheological heterogeneity?
    Fagereng Å; Beall A
    Philos Trans A Math Phys Eng Sci; 2021 Mar; 379(2193):20190421. PubMed ID: 33517872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermittent lab earthquakes in dynamically weakening fault gouge.
    Rubino V; Lapusta N; Rosakis AJ
    Nature; 2022 Jun; 606(7916):922-929. PubMed ID: 35650443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An unload-induced direct-shear model for granular gouge friction in rock discontinuities.
    Wu W; Zou Y; Li X; Zhao J
    Rev Sci Instrum; 2014 Sep; 85(9):093902. PubMed ID: 25273734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of the Structural and Geomechanical Anisotropy in Fault Gouges Using 3D Micro-Computed Tomography (μ-CT).
    Yang E; Yun TS; Kim KY; Moon SW; Seo YS
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32825407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow-to-Friction Transition in Simulated Calcite Gouge: Experiments and Microphysical Modeling.
    Chen J; Verberne BA; Niemeijer AR
    J Geophys Res Solid Earth; 2020 Nov; 125(11):e2020JB019970. PubMed ID: 33381362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleation of Stick-Slip Instability Within a Large-Scale Experimental Fault: Effects of Stress Heterogeneities Due to Loading and Gouge Layer Compaction.
    Buijze L; Guo Y; Niemeijer AR; Ma S; Spiers CJ
    J Geophys Res Solid Earth; 2020 Aug; 125(8):e2019JB018429. PubMed ID: 32999804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micromechanics of sea ice frictional slip from test basin scale experiments.
    Sammonds PR; Hatton DC; Feltham DL
    Philos Trans A Math Phys Eng Sci; 2017 Feb; 375(2086):. PubMed ID: 28025302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-thin clay layers facilitate seismic slip in carbonate faults.
    Smeraglia L; Billi A; Carminati E; Cavallo A; Di Toro G; Spagnuolo E; Zorzi F
    Sci Rep; 2017 Apr; 7(1):664. PubMed ID: 28386064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydro-mechanical coupling characteristics and weakening mechanisms of filling joint resulting from water injection.
    Liu Y; Xu C; Xu J; Zeng X
    Sci Rep; 2022 Dec; 12(1):21957. PubMed ID: 36535996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic weakening of serpentinite gouges and bare surfaces at seismic slip rates.
    Proctor BP; Mitchell TM; Hirth G; Goldsby D; Zorzi F; Platt JD; Di Toro G
    J Geophys Res Solid Earth; 2014 Nov; 119(11):8107-8131. PubMed ID: 26167425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-displacement, hydrothermal frictional properties of DFDP-1 fault rocks, Alpine Fault, New Zealand: Implications for deep rupture propagation.
    Niemeijer AR; Boulton C; Toy VG; Townend J; Sutherland R
    J Geophys Res Solid Earth; 2016 Feb; 121(2):624-647. PubMed ID: 27610290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seismic Slip-Pulse Experiments Simulate Induced Earthquake Rupture in the Groningen Gas Field.
    Hunfeld LB; Chen J; Niemeijer AR; Ma S; Spiers CJ
    Geophys Res Lett; 2021 Jun; 48(11):e2021GL092417. PubMed ID: 34219831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fault rock heterogeneity can produce fault weakness and reduce fault stability.
    Bedford JD; Faulkner DR; Lapusta N
    Nat Commun; 2022 Jan; 13(1):326. PubMed ID: 35039494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fault lubrication during earthquakes.
    Di Toro G; Han R; Hirose T; De Paola N; Nielsen S; Mizoguchi K; Ferri F; Cocco M; Shimamoto T
    Nature; 2011 Mar; 471(7339):494-8. PubMed ID: 21430777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scale dependence of rock friction at high work rate.
    Yamashita F; Fukuyama E; Mizoguchi K; Takizawa S; Xu S; Kawakata H
    Nature; 2015 Dec; 528(7581):254-7. PubMed ID: 26659187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The High-Frequency Signature of Slow and Fast Laboratory Earthquakes.
    Bolton DC; Shreedharan S; McLaskey GC; Rivière J; Shokouhi P; Trugman DT; Marone C
    J Geophys Res Solid Earth; 2022 Jun; 127(6):e2022JB024170. PubMed ID: 35864884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rock mechanics. Superplastic nanofibrous slip zones control seismogenic fault friction.
    Verberne BA; Plümper O; de Winter DA; Spiers CJ
    Science; 2014 Dec; 346(6215):1342-4. PubMed ID: 25504714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.