These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37035989)

  • 1. A hidden Markov model for continuous longitudinal data with missing responses and dropout.
    Pandolfi S; Bartolucci F; Pennoni F
    Biom J; 2023 Jun; 65(5):e2200016. PubMed ID: 37035989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A joint model for longitudinal and survival data based on an AR(1) latent process.
    Bacci S; Bartolucci F; Pandolfi S
    Stat Methods Med Res; 2018 May; 27(5):1285-1311. PubMed ID: 27587589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A shared-parameter continuous-time hidden Markov and survival model for longitudinal data with informative dropout.
    Bartolucci F; Farcomeni A
    Stat Med; 2019 Mar; 38(6):1056-1073. PubMed ID: 30324662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A discrete time event-history approach to informative drop-out in mixed latent Markov models with covariates.
    Bartolucci F; Farcomeni A
    Biometrics; 2015 Mar; 71(1):80-89. PubMed ID: 25227970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Longitudinal data analysis with non-ignorable missing data.
    Tseng CH; Elashoff R; Li N; Li G
    Stat Methods Med Res; 2016 Feb; 25(1):205-20. PubMed ID: 22637472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Longitudinal latent variable models given incompletely observed biomarkers and covariates.
    Ren C; Shin Y
    Stat Med; 2016 Nov; 35(26):4729-4745. PubMed ID: 27377366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hidden Markov latent variable models with multivariate longitudinal data.
    Song X; Xia Y; Zhu H
    Biometrics; 2017 Mar; 73(1):313-323. PubMed ID: 27148857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pattern mixture models and latent class models for the analysis of multivariate longitudinal data with informative dropouts.
    Dantan E; Proust-Lima C; Letenneur L; Jacqmin-Gadda H
    Int J Biostat; 2008; 4(1):Article 14. PubMed ID: 22462120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled pattern imputation for sensitivity analysis of longitudinal binary and ordinal outcomes with nonignorable dropout.
    Tang Y
    Stat Med; 2018 Apr; 37(9):1467-1481. PubMed ID: 29333672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multivariate linear mixed models with censored and nonignorable missing outcomes, with application to AIDS studies.
    Lin TI; Wang WL
    Biom J; 2022 Oct; 64(7):1325-1339. PubMed ID: 35723051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantile regression for incomplete longitudinal data with selection by death.
    Jacqmin-Gadda H; Rouanet A; Mba RD; Philipps V; Dartigues JF
    Stat Methods Med Res; 2020 Sep; 29(9):2697-2716. PubMed ID: 32180497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible modeling of multiple nonlinear longitudinal trajectories with censored and non-ignorable missing outcomes.
    Lin TI; Wang WL
    Stat Methods Med Res; 2023 Mar; 32(3):593-608. PubMed ID: 36624626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian pattern-mixture models for dropout and intermittently missing data in longitudinal data analysis.
    Blozis SA
    Behav Res Methods; 2024 Mar; 56(3):1953-1967. PubMed ID: 37221346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inference methods for saturated models in longitudinal clinical trials with incomplete binary data.
    Song JX
    Pharm Stat; 2006; 5(4):295-304. PubMed ID: 17128429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model selection for generalized estimating equations accommodating dropout missingness.
    Shen CW; Chen YH
    Biometrics; 2012 Dec; 68(4):1046-54. PubMed ID: 22463099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling missingness for time-to-event data: a case study in osteoporosis.
    Neuenschwander B; Branson M
    J Biopharm Stat; 2004 Nov; 14(4):1005-19. PubMed ID: 15587977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Doubly robust estimates for binary longitudinal data analysis with missing response and missing covariates.
    Chen B; Zhou XH
    Biometrics; 2011 Sep; 67(3):830-42. PubMed ID: 21281272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining mixed effects hidden Markov models with latent alternating recurrent event processes to model diurnal active-rest cycles.
    Ren B; Barnett I
    Biometrics; 2023 Dec; 79(4):3402-3417. PubMed ID: 37017074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Latent pattern mixture models for informative intermittent missing data in longitudinal studies.
    Lin H; McCulloch CE; Rosenheck RA
    Biometrics; 2004 Jun; 60(2):295-305. PubMed ID: 15180654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite Mixtures of Hidden Markov Models for Longitudinal Responses Subject to Drop out.
    Marino MF; Alfò M
    Multivariate Behav Res; 2020; 55(5):647-663. PubMed ID: 31559866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.