BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 37036374)

  • 1. Identification of Long Intergenic Noncoding RNAs in
    Yi K; Yan W; Li X; Yang S; Li J; Yin Y; Yuan F; Wang H; Kang Z; Han D; Zeng Q
    Microbiol Spectr; 2023 Jun; 11(3):e0344922. PubMed ID: 37036374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Whole-Genome Metalloproteases in the Wheat Sharp Eyespot Pathogen
    Guo F; Pan L; Liu H; Lv L; Chen X; Liu Y; Li H; Ye W; Zhang Z
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142601
    [No Abstract]   [Full Text] [Related]  

  • 3. Reduction of
    Li X; Mu K; Yang S; Wei J; Wang C; Yan W; Yuan F; Wang H; Han D; Kang Z; Zeng Q
    Mol Plant Microbe Interact; 2022 Sep; 35(9):803-813. PubMed ID: 36102883
    [No Abstract]   [Full Text] [Related]  

  • 4. Extreme Diversity of Mycoviruses Present in Single Strains of Rhizoctonia cerealis, the Pathogen of Wheat Sharp Eyespot.
    Li W; Sun H; Cao S; Zhang A; Zhang H; Shu Y; Chen H
    Microbiol Spectr; 2023 Aug; 11(4):e0052223. PubMed ID: 37436153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The wheat AGC kinase TaAGC1 is a positive contributor to host resistance to the necrotrophic pathogen Rhizoctonia cerealis.
    Zhu X; Yang K; Wei X; Zhang Q; Rong W; Du L; Ye X; Qi L; Zhang Z
    J Exp Bot; 2015 Nov; 66(21):6591-603. PubMed ID: 26220083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Pathogen-Induced MATE Gene
    Su Q; Rong W; Zhang Z
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The wheat calcium-dependent protein kinase TaCPK7-D positively regulates host resistance to sharp eyespot disease.
    Wei X; Shen F; Hong Y; Rong W; Du L; Liu X; Xu H; Ma L; Zhang Z
    Mol Plant Pathol; 2016 Oct; 17(8):1252-64. PubMed ID: 26720854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The wheat NB-LRR gene TaRCR1 is required for host defence response to the necrotrophic fungal pathogen Rhizoctonia cerealis.
    Zhu X; Lu C; Du L; Ye X; Liu X; Coules A; Zhang Z
    Plant Biotechnol J; 2017 Jun; 15(6):674-687. PubMed ID: 27862842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The wheat ethylene response factor transcription factor pathogen-induced ERF1 mediates host responses to both the necrotrophic pathogen Rhizoctonia cerealis and freezing stresses.
    Zhu X; Qi L; Liu X; Cai S; Xu H; Huang R; Li J; Wei X; Zhang Z
    Plant Physiol; 2014 Mar; 164(3):1499-514. PubMed ID: 24424323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global Characterization of GH10 Family Xylanase Genes in
    Lu L; Liu Y; Zhang Z
    Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32155734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Wall-Associated Receptor-Like Kinase TaWAK7D Is Required for Defense Responses to
    Qi H; Zhu X; Guo F; Lv L; Zhang Z
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cysteine-rich receptor-like kinase TaCRK3 contributes to defense against Rhizoctonia cerealis in wheat.
    Guo F; Wu T; Shen F; Xu G; Qi H; Zhang Z
    J Exp Bot; 2021 Oct; 72(20):6904-6919. PubMed ID: 34254642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The wheat R2R3-MYB transcription factor TaRIM1 participates in resistance response against the pathogen Rhizoctonia cerealis infection through regulating defense genes.
    Shan T; Rong W; Xu H; Du L; Liu X; Zhang Z
    Sci Rep; 2016 Jul; 6():28777. PubMed ID: 27364458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The wheat LLM-domain-containing transcription factor TaGATA1 positively modulates host immune response to Rhizoctonia cerealis.
    Liu X; Zhu X; Wei X; Lu C; Shen F; Zhang X; Zhang Z
    J Exp Bot; 2020 Jan; 71(1):344-355. PubMed ID: 31536614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide analysis and characterization of the TaTLP gene family in wheat and functional characterization of the TaTLP44 in response to Rhizoctonia cerealis.
    Gao Z; Sun M; Shao C; Chen Y; Xiang L; Wu J; Wang J; Chen X
    Plant Physiol Biochem; 2024 Feb; 207():108323. PubMed ID: 38183904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The escalating threat of Rhizoctonia cerealis, the causal agent of sharp eyespot in wheat.
    Hamada MS; Yin Y; Chen H; Ma Z
    Pest Manag Sci; 2011 Nov; 67(11):1411-9. PubMed ID: 21726039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-Wide Identification of M35 Family Metalloproteases in
    Pan L; Wen S; Yu J; Lu L; Zhu X; Zhang Z
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32340265
    [No Abstract]   [Full Text] [Related]  

  • 18. Development of a Rapid Approach for Detecting Sharp Eyespot Resistance in Seedling-Stage Wheat and Its Application in Chinese Wheat Cultivars.
    Ren Y; Yu PB; Wang Y; Hou WX; Yang X; Fan JL; Wu XH; Lv XL; Zhang N; Zhao L; Dong ZD; Chen F
    Plant Dis; 2020 Jun; 104(6):1662-1667. PubMed ID: 32324096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of TaSTT3b-2B improves resistance to sharp eyespot and increases grain weight in wheat.
    Zhu X; Rong W; Wang K; Guo W; Zhou M; Wu J; Ye X; Wei X; Zhang Z
    Plant Biotechnol J; 2022 Apr; 20(4):777-793. PubMed ID: 34873799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide identification and functional prediction of novel and fungi-responsive lincRNAs in Triticum aestivum.
    Zhang H; Hu W; Hao J; Lv S; Wang C; Tong W; Wang Y; Wang Y; Liu X; Ji W
    BMC Genomics; 2016 Mar; 17():238. PubMed ID: 26980266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.