BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37036429)

  • 1. Bacterial Outer-Membrane-Mimicking Giant Unilamellar Vesicle Model for Detecting Antimicrobial Permeability.
    Nandi S; Nair KS; Bajaj H
    Langmuir; 2023 Apr; 39(16):5891-5900. PubMed ID: 37036429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Curved membrane structures induced by native lipids in giant vesicles.
    Nair KS; Raj NB; Nampoothiri KM; Mohanan G; Acosta-GutiƩrrez S; Bajaj H
    J Colloid Interface Sci; 2022 Apr; 611():397-407. PubMed ID: 34963074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Processes and mechanisms underlying burst of giant unilamellar vesicles induced by antimicrobial peptides and compounds.
    Billah MM; Ahmed M; Islam MZ; Yamazaki M
    Biochim Biophys Acta Biomembr; 2024 Jun; 1866(5):184330. PubMed ID: 38679311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Action of Antimicrobial Peptides on Bacterial and Lipid Membranes: A Direct Comparison.
    Faust JE; Yang PY; Huang HW
    Biophys J; 2017 Apr; 112(8):1663-1672. PubMed ID: 28445757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial peptide magainin 2-induced rupture of single giant unilamellar vesicles comprising E. coli polar lipids.
    Billah MM; Or Rashid MM; Ahmed M; Yamazaki M
    Biochim Biophys Acta Biomembr; 2023 Mar; 1865(3):184112. PubMed ID: 36567034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single giant unilamellar vesicle method reveals effect of antimicrobial peptide magainin 2 on membrane permeability.
    Tamba Y; Yamazaki M
    Biochemistry; 2005 Dec; 44(48):15823-33. PubMed ID: 16313185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic asymmetric bacterial membranes incorporating lipopolysaccharides.
    Stephan MS; Dunsing V; Pramanik S; Chiantia S; Barbirz S; Robinson T; Dimova R
    Biophys J; 2023 Jun; 122(11):2147-2161. PubMed ID: 36523159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. rBPI(21) promotes lipopolysaccharide aggregation and exerts its antimicrobial effects by (hemi)fusion of PG-containing membranes.
    Domingues MM; Castanho MA; Santos NC
    PLoS One; 2009 Dec; 4(12):e8385. PubMed ID: 20027298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magainin 2-induced pore formation in the lipid membranes depends on its concentration in the membrane interface.
    Tamba Y; Yamazaki M
    J Phys Chem B; 2009 Apr; 113(14):4846-52. PubMed ID: 19267489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimicrobial Peptide Lactoferricin B-Induced Rapid Leakage of Internal Contents from Single Giant Unilamellar Vesicles.
    Moniruzzaman M; Alam JM; Dohra H; Yamazaki M
    Biochemistry; 2015 Sep; 54(38):5802-14. PubMed ID: 26368853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid lateral organization on giant unilamellar vesicles containing lipopolysaccharides.
    Kubiak J; Brewer J; Hansen S; Bagatolli LA
    Biophys J; 2011 Feb; 100(4):978-86. PubMed ID: 21320442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid topology and electrostatic interactions underpin lytic activity of linear cationic antimicrobial peptides in membranes.
    Paterson DJ; Tassieri M; Reboud J; Wilson R; Cooper JM
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):E8324-E8332. PubMed ID: 28931578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translocation of cationic amphipathic peptides across the membranes of pure phospholipid giant vesicles.
    Wheaten SA; Ablan FD; Spaller BL; Trieu JM; Almeida PF
    J Am Chem Soc; 2013 Nov; 135(44):16517-25. PubMed ID: 24152283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous insertion of lipopolysaccharide into lipid membranes from aqueous solution.
    Alam JM; Yamazaki M
    Chem Phys Lipids; 2011 Feb; 164(2):166-74. PubMed ID: 21195067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering bio-mimicking functional vesicles with multiple compartments for quantifying molecular transport.
    Mohanan G; Nair KS; Nampoothiri KM; Bajaj H
    Chem Sci; 2020 Apr; 11(18):4669-4679. PubMed ID: 34122921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstitution of an RNA Virus Replicase in Artificial Giant Unilamellar Vesicles Supports Full Replication and Provides Protection for the Double-Stranded RNA Replication Intermediate.
    Kovalev N; Pogany J; Nagy PD
    J Virol; 2020 Aug; 94(18):. PubMed ID: 32641477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elementary Processes and Mechanisms of Interactions of Antimicrobial Peptides with Membranes-Single Giant Unilamellar Vesicle Studies.
    Hasan M; Yamazaki M
    Adv Exp Med Biol; 2019; 1117():17-32. PubMed ID: 30980351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of Enzyme Reaction Initiation inside Giant Unilamellar Vesicles by the Cell-Penetrating Peptide-Mediated Translocation of Cargo Proteins.
    Miwa A; Kamiya K
    ACS Synth Biol; 2022 Nov; 11(11):3836-3846. PubMed ID: 36197293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clustering of Giant Unilamellar Vesicles Promoted by Covalent and Noncovalent Bonding of Functional Groups at Membrane-Embedded Peptides.
    Stuhr-Hansen N; Vagianou CD; Blixt O
    Bioconjug Chem; 2019 Aug; 30(8):2156-2164. PubMed ID: 31322865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Membrane Potential on Entry of Cell-Penetrating Peptide Transportan 10 into Single Vesicles.
    Moghal MMR; Islam MZ; Hossain F; Saha SK; Yamazaki M
    Biophys J; 2020 Jan; 118(1):57-69. PubMed ID: 31810658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.