BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37036430)

  • 1. In silico investigation of the structural stability as the origin of the pathogenicity of
    Yoon J; Lee M; Park Y; Lee K; Shin S
    J Biomol Struct Dyn; 2023; 41(23):14103-14115. PubMed ID: 37036430
    [No Abstract]   [Full Text] [Related]  

  • 2. Cryo-EM structure of alpha-synuclein fibrils.
    Guerrero-Ferreira R; Taylor NM; Mona D; Ringler P; Lauer ME; Riek R; Britschgi M; Stahlberg H
    Elife; 2018 Jul; 7():. PubMed ID: 29969391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two new polymorphic structures of human full-length alpha-synuclein fibrils solved by cryo-electron microscopy.
    Guerrero-Ferreira R; Taylor NM; Arteni AA; Kumari P; Mona D; Ringler P; Britschgi M; Lauer ME; Makky A; Verasdonck J; Riek R; Melki R; Meier BH; Böckmann A; Bousset L; Stahlberg H
    Elife; 2019 Dec; 8():. PubMed ID: 31815671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation on the Molecular Interactions Stabilizing the Structure of α-synuclein Fibril: An In silico Study.
    Sanjeev A; Mattaparthi VSK
    Cent Nerv Syst Agents Med Chem; 2017; 17(3):209-218. PubMed ID: 28460628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural analyses and force fields comparison for NACore (68-78) and SubNACore (69-77) fibril segments of Parkinson's disease.
    Alıcı H
    J Mol Model; 2020 May; 26(6):132. PubMed ID: 32394304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How oxidized EGCG remodels α-synuclein fibrils into non-toxic aggregates: insights from computational simulations.
    Gonçalves PB; Palhano FL; Cordeiro Y; Sodero ACR
    Phys Chem Chem Phys; 2023 Jul; 25(28):19182-19194. PubMed ID: 37431676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryo-EM structure of amyloid fibril formed by α-synuclein hereditary A53E mutation reveals a distinct protofilament interface.
    Sun C; Zhou K; DePaola P; Shin WS; Hillyer T; Sawaya MR; Zhu R; Peng C; Zhou ZH; Jiang L
    J Biol Chem; 2023 Apr; 299(4):104566. PubMed ID: 36871760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Analysis of the Relative Fragmentation Stabilities of Polymorphic Alpha-Synuclein Amyloid Fibrils.
    Sanami S; Purton TJ; Smith DP; Tuite MF; Xue WF
    Biomolecules; 2022 Apr; 12(5):. PubMed ID: 35625557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parkinson's disease-related phosphorylation at Tyr39 rearranges α-synuclein amyloid fibril structure revealed by cryo-EM.
    Zhao K; Lim YJ; Liu Z; Long H; Sun Y; Hu JJ; Zhao C; Tao Y; Zhang X; Li D; Li YM; Liu C
    Proc Natl Acad Sci U S A; 2020 Aug; 117(33):20305-20315. PubMed ID: 32737160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures of fibrils formed by α-synuclein hereditary disease mutant H50Q reveal new polymorphs.
    Boyer DR; Li B; Sun C; Fan W; Sawaya MR; Jiang L; Eisenberg DS
    Nat Struct Mol Biol; 2019 Nov; 26(11):1044-1052. PubMed ID: 31695184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Baicalein exhibits differential effects and mechanisms towards disruption of α-synuclein fibrils with different polymorphs.
    Yao Y; Tang Y; Zhou Y; Yang Z; Wei G
    Int J Biol Macromol; 2022 Nov; 220():316-325. PubMed ID: 35981677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures and free energy landscapes of the A53T mutant-type α-synuclein protein and impact of A53T mutation on the structures of the wild-type α-synuclein protein with dynamics.
    Coskuner O; Wise-Scira O
    ACS Chem Neurosci; 2013 Jul; 4(7):1101-13. PubMed ID: 23607785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic Conformational Preferences and Interactions in α-Synuclein Fibrils: Insights from Molecular Dynamics Simulations.
    Ilie IM; Nayar D; den Otter WK; van der Vegt NFA; Briels WJ
    J Chem Theory Comput; 2018 Jun; 14(6):3298-3310. PubMed ID: 29715424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein.
    Tuttle MD; Comellas G; Nieuwkoop AJ; Covell DJ; Berthold DA; Kloepper KD; Courtney JM; Kim JK; Barclay AM; Kendall A; Wan W; Stubbs G; Schwieters CD; Lee VM; George JM; Rienstra CM
    Nat Struct Mol Biol; 2016 May; 23(5):409-15. PubMed ID: 27018801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the acidic domain of α-synuclein in amyloid fibril formation: a molecular dynamics study.
    Park S; Yoon J; Jang S; Lee K; Shin S
    J Biomol Struct Dyn; 2016; 34(2):376-83. PubMed ID: 25869255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fold preference and thermodynamic stability of α-synuclein fibrils is encoded in the non-amyloid-β component region.
    Xu L; Bhattacharya S; Thompson D
    Phys Chem Chem Phys; 2018 Feb; 20(6):4502-4512. PubMed ID: 29372732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microscopic Understanding of the Conformational Stability of the Aggregated Nonamyloid β Components of α-Synuclein.
    Mondal S; Ghanta KP; Bandyopadhyay S
    J Chem Inf Model; 2023 Mar; 63(5):1542-1555. PubMed ID: 36866721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternative packing modes leading to amyloid polymorphism in five fragments studied with molecular dynamics.
    Berhanu WM; Masunov AE
    Biopolymers; 2012; 98(2):131-44. PubMed ID: 22020870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concerted enhanced-sampling simulations to elucidate the helix-fibril transition pathway of intrinsically disordered α-Synuclein.
    Saurabh A; Prabhu NP
    Int J Biol Macromol; 2022 Dec; 223(Pt A):1024-1041. PubMed ID: 36379279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural packing of the non-amyloid component core domain in α-synuclein plays a role in the stability of the fibrils.
    Abramov-Harpaz K; Lan-Mark S; Miller Y
    Biophys Chem; 2024 Jul; 310():107239. PubMed ID: 38663121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.