These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37036749)

  • 1. High Initial Coulombic Efficiency Hard Carbon Anodes Enabled by Facile Surface Annealing Engineering.
    Deng M; Dong W; Huang F
    Chem Asian J; 2023 Jun; 18(11):e202300210. PubMed ID: 37036749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High ICE Hard Carbon Anodes for Lithium-Ion Batteries Enabled by a High Work Function.
    Ren N; Wang L; He X; Zhang L; Dong J; Chen F; Xiao J; Pan B; Chen C
    ACS Appl Mater Interfaces; 2021 Oct; 13(39):46813-46820. PubMed ID: 34546030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailoring a Phenolic Resin Precursor by Facile Pre-oxidation Tactics to Realize a High-Initial-Coulombic-Efficiency Hard Carbon Anode for Sodium-Ion Batteries.
    Zhang G; Zhang L; Ren Q; Yan L; Zhang F; Lv W; Shi Z
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31650-31659. PubMed ID: 34189907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemically Presodiated Hard Carbon Anodes with Enhanced Initial Coulombic Efficiencies for High-Energy Sodium Ion Batteries.
    Liu M; Zhang J; Guo S; Wang B; Shen Y; Ai X; Yang H; Qian J
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17620-17627. PubMed ID: 32208636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-Function Presodiation with Sodium Diphenyl Ketone towards Ultra-stable Hard Carbon Anodes for Sodium-Ion Batteries.
    Fang H; Gao S; Ren M; Huang Y; Cheng F; Chen J; Li F
    Angew Chem Int Ed Engl; 2023 Jan; 62(2):e202214717. PubMed ID: 36369628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Engineering Enabling High Initial Coulombic Efficiency and Rubost Solid Electrolyte Interphase for Hard Carbon in Sodium-Ion Batteries.
    Sun Y; Hou R; Xu S; Zhou H; Guo S
    Angew Chem Int Ed Engl; 2024 Mar; 63(11):e202318960. PubMed ID: 38196292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boosting Sodium Storage Performance of Hard Carbon Anodes by Pore Architecture Engineering.
    Liu M; Wu F; Bai Y; Li Y; Ren H; Zhao R; Feng X; Song T; Wu C
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):47671-47683. PubMed ID: 34597033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-ICE and High-Capacity Retention Silicon-Based Anode for Lithium-Ion Battery.
    Tzeng Y; Jhan CY; Wu YC; Chen GY; Chiu KM; Guu SY
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring the surface chemistry of hard carbon towards high-efficiency sodium ion storage.
    Shen C; Wang C; Jin T; Zhang X; Jiao L; Xie K
    Nanoscale; 2022 Jun; 14(25):8959-8966. PubMed ID: 35635359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast and Controllable Prelithiation of Hard Carbon Anodes for Lithium-Ion Batteries.
    Zhang X; Qu H; Ji W; Zheng D; Ding T; Abegglen C; Qiu D; Qu D
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11589-11599. PubMed ID: 32056422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feasibility of Full (Li-Ion)-O
    Hirshberg D; Sharon D; De La Llave E; Afri M; Frimer AA; Kwak WJ; Sun YK; Aurbach D
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4352-4361. PubMed ID: 27786463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boosting Solid-State Reconversion Reactivity to Mitigate Lithium Trapping for High Initial Coulombic Efficiency.
    Cao S; Zhu Z; Zhang W; Xia H; Zeng Y; Yuan S; Ge X; Lv Z; Wei J; Liu L; Du Y; Xi S; Loh XJ; Chen X
    Adv Mater; 2024 Jan; 36(4):e2304900. PubMed ID: 37549425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prelithiated Surface Oxide Layer Enabled High-Performance Si Anode for Lithium Storage.
    Zhu Y; Hu W; Zhou J; Cai W; Lu Y; Liang J; Li X; Zhu S; Fu Q; Qian Y
    ACS Appl Mater Interfaces; 2019 May; 11(20):18305-18312. PubMed ID: 31046217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbonaceous Anodes Derived from Sugarcane Bagasse for Sodium-Ion Batteries.
    Rath PC; Patra J; Huang HT; Bresser D; Wu TY; Chang JK
    ChemSusChem; 2019 May; 12(10):2302-2309. PubMed ID: 30835938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemically Prelithiated Hard-Carbon Anode for High Power and High Capacity Li-Ion Batteries.
    Shen Y; Qian J; Yang H; Zhong F; Ai X
    Small; 2020 Feb; 16(7):e1907602. PubMed ID: 31990451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hard Carbon and Li
    Sharma N; Puthusseri D; Thotiyl MO; Ogale S
    ACS Omega; 2017 Dec; 2(12):8818-8824. PubMed ID: 31457412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na-Ion Battery Anodes: Materials and Electrochemistry.
    Luo W; Shen F; Bommier C; Zhu H; Ji X; Hu L
    Acc Chem Res; 2016 Feb; 49(2):231-40. PubMed ID: 26783764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enabling SiO
    Yan MY; Li G; Zhang J; Tian YF; Yin YX; Zhang CJ; Jiang KC; Xu Q; Li HL; Guo YG
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27202-27209. PubMed ID: 32436378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel hard carbon/graphite composites synthesized by a facile
    Ge C; Fan Z; Zhang J; Qiao Y; Wang J; Ling L
    RSC Adv; 2018 Oct; 8(60):34682-34689. PubMed ID: 35548609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hard carbon for sodium-ion batteries: progress, strategies and future perspective.
    Wu C; Yang Y; Zhang Y; Xu H; He X; Wu X; Chou S
    Chem Sci; 2024 May; 15(17):6244-6268. PubMed ID: 38699270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.