These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Implementation of Girsanov Reweighting in OpenMM and Deeptime. Schäfer JL; Keller BG J Phys Chem B; 2024 Jun; 128(25):6014-6027. PubMed ID: 38865491 [TBL] [Abstract][Full Text] [Related]
6. Multiscale Reweighted Stochastic Embedding: Deep Learning of Collective Variables for Enhanced Sampling. Rydzewski J; Valsson O J Phys Chem A; 2021 Jul; 125(28):6286-6302. PubMed ID: 34213915 [TBL] [Abstract][Full Text] [Related]
7. Reweighted Manifold Learning of Collective Variables from Enhanced Sampling Simulations. Rydzewski J; Chen M; Ghosh TK; Valsson O J Chem Theory Comput; 2022 Dec; 18(12):7179-7192. PubMed ID: 36367826 [TBL] [Abstract][Full Text] [Related]
8. Girsanov reweighting for path ensembles and Markov state models. Donati L; Hartmann C; Keller BG J Chem Phys; 2017 Jun; 146(24):244112. PubMed ID: 28668056 [TBL] [Abstract][Full Text] [Related]
9. Permutationally Invariant Networks for Enhanced Sampling (PINES): Discovery of Multimolecular and Solvent-Inclusive Collective Variables. Herringer NSM; Dasetty S; Gandhi D; Lee J; Ferguson AL J Chem Theory Comput; 2024 Jan; 20(1):178-198. PubMed ID: 38150421 [TBL] [Abstract][Full Text] [Related]
10. Collective variable discovery and enhanced sampling using autoencoders: Innovations in network architecture and error function design. Chen W; Tan AR; Ferguson AL J Chem Phys; 2018 Aug; 149(7):072312. PubMed ID: 30134681 [TBL] [Abstract][Full Text] [Related]
11. An interoperable implementation of collective-variable based enhanced sampling methods in extended phase space within the OpenMM package. Bajpai S; Petkov BK; Tong M; Abreu CRA; Nair NN; Tuckerman ME J Comput Chem; 2023 Oct; 44(28):2166-2183. PubMed ID: 37464902 [TBL] [Abstract][Full Text] [Related]
12. Enhanced Sampling of Biomolecular Slow Conformational Transitions Using Adaptive Sampling and Machine Learning. Zhang M; Wu H; Wang Y J Chem Theory Comput; 2024 Oct; 20(19):8569-8582. PubMed ID: 39301626 [TBL] [Abstract][Full Text] [Related]
13. Chasing Collective Variables Using Autoencoders and Biased Trajectories. Belkacemi Z; Gkeka P; Lelièvre T; Stoltz G J Chem Theory Comput; 2022 Jan; 18(1):59-78. PubMed ID: 34965117 [TBL] [Abstract][Full Text] [Related]
15. Augmenting Human Expertise in Weighted Ensemble Simulations through Deep Learning based Information Bottleneck. Wang D; Tiwary P ArXiv; 2024 Nov; ():. PubMed ID: 38947925 [TBL] [Abstract][Full Text] [Related]
16. The Adaptive Path Collective Variable: A Versatile Biasing Approach to Compute the Average Transition Path and Free Energy of Molecular Transitions. Pérez de Alba Ortíz A; Vreede J; Ensing B Methods Mol Biol; 2019; 2022():255-290. PubMed ID: 31396907 [TBL] [Abstract][Full Text] [Related]
17. Reweighting non-equilibrium steady-state dynamics along collective variables. Bause M; Bereau T J Chem Phys; 2021 Apr; 154(13):134105. PubMed ID: 33832234 [TBL] [Abstract][Full Text] [Related]
18. Effective data-driven collective variables for free energy calculations from metadynamics of paths. Müllender L; Rizzi A; Parrinello M; Carloni P; Mandelli D PNAS Nexus; 2024 Apr; 3(4):pgae159. PubMed ID: 38665160 [TBL] [Abstract][Full Text] [Related]
19. Deep learning the slow modes for rare events sampling. Bonati L; Piccini G; Parrinello M Proc Natl Acad Sci U S A; 2021 Nov; 118(44):. PubMed ID: 34706940 [TBL] [Abstract][Full Text] [Related]
20. Automated design of collective variables using supervised machine learning. Sultan MM; Pande VS J Chem Phys; 2018 Sep; 149(9):094106. PubMed ID: 30195289 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]