These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 37036946)

  • 1. Li
    Pan Y; Qi X; Du H; Ji Y; Yang D; Zhu Z; Yang Y; Qie L; Huang Y
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):18763-18770. PubMed ID: 37036946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal/LiF/Li
    Du J; Wang W; Sheng Eng AY; Liu X; Wan M; Seh ZW; Sun Y
    Nano Lett; 2020 Jan; 20(1):546-552. PubMed ID: 31775001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrocatalytic Decomposition of Lithium Oxalate-Based Composite Microspheres as a Prelithiation Additive in Lithium-Ion Batteries.
    Liu J; Lin J; Yin Z; Tong Z; Liu J; Wang Z; Zhou Y; Li J
    Molecules; 2024 Jun; 29(13):. PubMed ID: 38998928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Chemical Synthesis of Lithium Fluoride/Metal Nanocomposite for High Capacity Prelithiation of Cathodes.
    Sun Y; Lee HW; Zheng G; Seh ZW; Sun J; Li Y; Cui Y
    Nano Lett; 2016 Feb; 16(2):1497-501. PubMed ID: 26784146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Energy-Density and Long-Lifetime Lithium-Ion Battery Enabled by a Stabilized Li
    Zheng L; Yu A; Li G; Zhang J
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):38706-38716. PubMed ID: 35993675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Prelithiation Separator for Compensating the Initial Capacity Loss of Lithium-Ion Batteries.
    Rao Z; Wu J; He B; Chen W; Wang H; Fu Q; Huang Y
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38194-38201. PubMed ID: 34342445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Scalable Cathode Chemical Prelithiation Strategy for Advanced Silicon-Based Lithium Ion Full Batteries.
    Liu Z; Ma S; Mu X; Li R; Yin G; Zuo P
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):11985-11994. PubMed ID: 33683090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Practical Prelithiation of 4.5 V LiCoO
    Zhao X; Yi R; Zheng L; Liu Y; Li Z; Zeng L; Shen Y; Lu W; Chen L
    Small; 2022 Mar; 18(9):e2106394. PubMed ID: 34908238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prelithiation Bridges the Gap for Developing Next-Generation Lithium-Ion Batteries/Capacitors.
    Li F; Cao Y; Wu W; Wang G; Qu D
    Small Methods; 2022 Jul; 6(7):e2200411. PubMed ID: 35680608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Facile Pre-Lithiated Strategy towards High-Performance Li
    Xia Y; Fang Z; Lu C; Xiao Z; He X; Gan Y; Huang H; Wang G; Zhang W
    Nanomaterials (Basel); 2022 Feb; 12(5):. PubMed ID: 35269302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformal Prelithiation Nanoshell on LiCoO
    Liu X; Tan Y; Wang W; Li C; Seh ZW; Wang L; Sun Y
    Nano Lett; 2020 Jun; 20(6):4558-4565. PubMed ID: 32374615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implanting Transition Metal into Li
    Chen Y; Zhu Y; Zuo W; Kuai X; Yao J; Zhang B; Sun Z; Yin J; Wu X; Zhang H; Yan Y; Huang H; Zheng L; Xu J; Yin W; Qiu Y; Zhang Q; Hwang I; Sun CJ; Amine K; Xu GL; Qiao Y; Sun SG
    Angew Chem Int Ed Engl; 2024 Jan; 63(5):e202316112. PubMed ID: 38088222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prelithiation Reagents and Strategies on High Energy Lithium-Ion Batteries.
    Xin C; Gao J; Luo R; Zhou W
    Chemistry; 2022 Apr; 28(23):e202104282. PubMed ID: 35137468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insulative Ion-Conducting Lithium Selenide as the Artificial Solid-Electrolyte Interface Enabling Heavy-Duty Lithium Metal Operations.
    Ma Y; Wei L; Gu Y; Zhao L; Jing Y; Mu Q; Su Y; Yuan X; Peng Y; Deng Z
    Nano Lett; 2021 Sep; 21(17):7354-7362. PubMed ID: 34448389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prelithiation: A Crucial Strategy for Boosting the Practical Application of Next-Generation Lithium Ion Battery.
    Wang F; Wang B; Li J; Wang B; Zhou Y; Wang D; Liu H; Dou S
    ACS Nano; 2021 Feb; 15(2):2197-2218. PubMed ID: 33570903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries.
    Zheng S; Chen Y; Xu Y; Yi F; Zhu Y; Liu Y; Yang J; Wang C
    ACS Nano; 2013 Dec; 7(12):10995-1003. PubMed ID: 24251957
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Yang Y; Wang J; Kim SC; Zhang W; Peng Y; Zhang P; Vilá RA; Ma Y; Jeong YK; Cui Y
    Nano Lett; 2023 Jun; 23(11):5042-5047. PubMed ID: 37236151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulating the Solvation Structure of Li
    He W; Xu H; Chen Z; Long J; Zhang J; Jiang J; Dou H; Zhang X
    Nanomicro Lett; 2023 Apr; 15(1):107. PubMed ID: 37071270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unblocked Electron Channels Enable Efficient Contact Prelithiation for Lithium-Ion Batteries.
    Yue XY; Yao YX; Zhang J; Yang SY; Li Z; Yan C; Zhang Q
    Adv Mater; 2022 Apr; 34(15):e2110337. PubMed ID: 35141957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Raw Mixed Conducting Interphase Affords Effective Prelithiation in Working Batteries.
    Yue XY; Yao YX; Zhang J; Li Z; Yang SY; Li XL; Yan C; Zhang Q
    Angew Chem Int Ed Engl; 2022 Jul; 61(29):e202205697. PubMed ID: 35532047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.