BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 37037965)

  • 1. Optimization of Cas9 activity through the addition of cytosine extensions to single-guide RNAs.
    Kawamata M; Suzuki HI; Kimura R; Suzuki A
    Nat Biomed Eng; 2023 May; 7(5):672-691. PubMed ID: 37037965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Efficient and Marker-free Genome Editing of Human Pluripotent Stem Cells by CRISPR-Cas9 RNP and AAV6 Donor-Mediated Homologous Recombination.
    Martin RM; Ikeda K; Cromer MK; Uchida N; Nishimura T; Romano R; Tong AJ; Lemgart VT; Camarena J; Pavel-Dinu M; Sindhu C; Wiebking V; Vaidyanathan S; Dever DP; Bak RO; Laustsen A; Lesch BJ; Jakobsen MR; Sebastiano V; Nakauchi H; Porteus MH
    Cell Stem Cell; 2019 May; 24(5):821-828.e5. PubMed ID: 31051134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural Nucleoside Modifications in Guide RNAs Can Modulate the Activity of the CRISPR-Cas9 System
    Prokhorova DV; Vokhtantsev IP; Tolstova PO; Zhuravlev ES; Kulishova LM; Zharkov DO; Stepanov GA
    CRISPR J; 2022 Dec; 5(6):799-812. PubMed ID: 36350691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature effect on CRISPR-Cas9 mediated genome editing.
    Xiang G; Zhang X; An C; Cheng C; Wang H
    J Genet Genomics; 2017 Apr; 44(4):199-205. PubMed ID: 28412228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precise genomic deletions using paired prime editing.
    Choi J; Chen W; Suiter CC; Lee C; Chardon FM; Yang W; Leith A; Daza RM; Martin B; Shendure J
    Nat Biotechnol; 2022 Feb; 40(2):218-226. PubMed ID: 34650269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 with improved proof-reading enhances homology-directed repair.
    Kato-Inui T; Takahashi G; Hsu S; Miyaoka Y
    Nucleic Acids Res; 2018 May; 46(9):4677-4688. PubMed ID: 29672770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Tools and Resources for CRISPR/Cas Genome Editing.
    Li C; Chu W; Gill RA; Sang S; Shi Y; Hu X; Yang Y; Zaman QU; Zhang B
    Genomics Proteomics Bioinformatics; 2023 Feb; 21(1):108-126. PubMed ID: 35341983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An efficient CRISPR/Cas9 platform for targeted genome editing in rose (Rosa hybrida).
    Wang C; Li Y; Wang N; Yu Q; Li Y; Gao J; Zhou X; Ma N
    J Integr Plant Biol; 2023 Apr; 65(4):895-899. PubMed ID: 36460630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-Cas9-Mediated Cytosine Base Editing Screen for the Functional Assessment of
    Xiong Y; Xi X; Xiang Y; Li S; Liu H; Su Y; He R; Xiong C; Xu B; Wang X; Fu L; Zhao C; Han X; Li X; Xie S; Ruan J
    Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37686137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9.
    Shen J; Zhou J; Chen GQ; Xiu ZL
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29899105
    [No Abstract]   [Full Text] [Related]  

  • 11. Optimisation of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 : single-guide RNA (sgRNA) delivery system in a goat model.
    Huang Y; Ding Y; Liu Y; Zhou S; Ding Q; Yan H; Ma B; Zhao X; Wang X; Chen Y
    Reprod Fertil Dev; 2019 Aug; 31(9):1533-1537. PubMed ID: 31079595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A stable DNA-free screening system for CRISPR/RNPs-mediated gene editing in hot and sweet cultivars of Capsicum annuum.
    Kim H; Choi J; Won KH
    BMC Plant Biol; 2020 Oct; 20(1):449. PubMed ID: 33004008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.
    Altenbuchner J
    Appl Environ Microbiol; 2016 Sep; 82(17):5421-7. PubMed ID: 27342565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Genome-Editing Nanomachine Constructed with a Clustered Regularly Interspaced Short Palindromic Repeats System and Activated by Near-Infrared Illumination.
    Peng H; Le C; Wu J; Li XF; Zhang H; Le XC
    ACS Nano; 2020 Mar; 14(3):2817-2826. PubMed ID: 32048826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detailed phenotypic and molecular analyses of genetically modified mice generated by CRISPR-Cas9-mediated editing.
    Parikh BA; Beckman DL; Patel SJ; White JM; Yokoyama WM
    PLoS One; 2015; 10(1):e0116484. PubMed ID: 25587897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ectopic expression of RAD52 and dn53BP1 improves homology-directed repair during CRISPR-Cas9 genome editing.
    Paulsen BS; Mandal PK; Frock RL; Boyraz B; Yadav R; Upadhyayula S; Gutierrez-Martinez P; Ebina W; Fasth A; Kirchhausen T; Talkowski ME; Agarwal S; Alt FW; Rossi DJ
    Nat Biomed Eng; 2017 Nov; 1(11):878-888. PubMed ID: 31015609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient CRISPR/Cas9-mediated genome editing in sheepgrass (Leymus chinensis).
    Lin Z; Chen L; Tang S; Zhao M; Li T; You J; You C; Li B; Zhao Q; Zhang D; Wang J; Shen Z; Song X; Zhang S; Cao X
    J Integr Plant Biol; 2023 Nov; 65(11):2416-2420. PubMed ID: 37698072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An update on precision genome editing by homology-directed repair in plants.
    Chen J; Li S; He Y; Li J; Xia L
    Plant Physiol; 2022 Mar; 188(4):1780-1794. PubMed ID: 35238390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progresses of CRISPR/Cas9 genome editing in forage crops.
    Ul Haq SI; Zheng D; Feng N; Jiang X; Qiao F; He JS; Qiu QS
    J Plant Physiol; 2022 Dec; 279():153860. PubMed ID: 36371870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the effects of sequence length and microsatellite instability on single-guide RNA activity and specificity.
    Zhao C; Wang Y; Nie X; Han X; Liu H; Li G; Yang G; Ruan J; Ma Y; Li X; Cheng H; Zhao S; Fang Y; Xie S
    Int J Biol Sci; 2019; 15(12):2641-2653. PubMed ID: 31754336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.