BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 37038142)

  • 1. Generative adversarial networks in EEG analysis: an overview.
    Habashi AG; Azab AM; Eldawlatly S; Aly GM
    J Neuroeng Rehabil; 2023 Apr; 20(1):40. PubMed ID: 37038142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generative Adversarial Networks-Based Data Augmentation for Brain-Computer Interface.
    Fahimi F; Dosen S; Ang KK; Mrachacz-Kersting N; Guan C
    IEEE Trans Neural Netw Learn Syst; 2021 Sep; 32(9):4039-4051. PubMed ID: 32841127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Convolution Generative Adversarial Network-Based Electroencephalogram Data Augmentation for Post-Stroke Rehabilitation with Motor Imagery.
    Xu F; Dong G; Li J; Yang Q; Wang L; Zhao Y; Yan Y; Zhao J; Pang S; Guo D; Zhang Y; Leng J
    Int J Neural Syst; 2022 Sep; 32(9):2250039. PubMed ID: 35881016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combating COVID-19 Using Generative Adversarial Networks and Artificial Intelligence for Medical Images: Scoping Review.
    Ali H; Shah Z
    JMIR Med Inform; 2022 Jun; 10(6):e37365. PubMed ID: 35709336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generative adversarial networks in dental imaging: a systematic review.
    Yang S; Kim KD; Ariji E; Kise Y
    Oral Radiol; 2024 Apr; 40(2):93-108. PubMed ID: 38001347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generative adversarial networks for spine imaging: A critical review of current applications.
    Vrettos K; Koltsakis E; Zibis AH; Karantanas AH; Klontzas ME
    Eur J Radiol; 2024 Feb; 171():111313. PubMed ID: 38237518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generative adversarial networks in ophthalmology: what are these and how can they be used?
    Wang Z; Lim G; Ng WY; Keane PA; Campbell JP; Tan GSW; Schmetterer L; Wong TY; Liu Y; Ting DSW
    Curr Opin Ophthalmol; 2021 Sep; 32(5):459-467. PubMed ID: 34324454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generative Adversarial Networks in Medical Image Processing.
    Gong M; Chen S; Chen Q; Zeng Y; Zhang Y
    Curr Pharm Des; 2021; 27(15):1856-1868. PubMed ID: 33238866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An EEG-Based Transfer Learning Method for Cross-Subject Fatigue Mental State Prediction.
    Zeng H; Li X; Borghini G; Zhao Y; Aricò P; Di Flumeri G; Sciaraffa N; Zakaria W; Kong W; Babiloni F
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33805522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generative Adversarial Networks in Digital Histopathology: Current Applications, Limitations, Ethical Considerations, and Future Directions.
    Alajaji SA; Khoury ZH; Elgharib M; Saeed M; Ahmed ARH; Khan MB; Tavares T; Jessri M; Puche AC; Hoorfar H; Stojanov I; Sciubba JJ; Sultan AS
    Mod Pathol; 2024 Jan; 37(1):100369. PubMed ID: 37890670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auto-Denoising for EEG Signals Using Generative Adversarial Network.
    An Y; Lam HK; Ling SH
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generative Adversarial Network (GAN) for Simulating Electroencephalography.
    Mahey P; Toussi N; Purnomu G; Herdman AT
    Brain Topogr; 2023 Sep; 36(5):661-670. PubMed ID: 37410276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic Review of Generative Adversarial Networks (GANs) for Medical Image Classification and Segmentation.
    Jeong JJ; Tariq A; Adejumo T; Trivedi H; Gichoya JW; Banerjee I
    J Digit Imaging; 2022 Apr; 35(2):137-152. PubMed ID: 35022924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EEGANet: Removal of Ocular Artifacts From the EEG Signal Using Generative Adversarial Networks.
    Sawangjai P; Trakulruangroj M; Boonnag C; Piriyajitakonkij M; Tripathy RK; Sudhawiyangkul T; Wilaiprasitporn T
    IEEE J Biomed Health Inform; 2022 Oct; 26(10):4913-4924. PubMed ID: 34826300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Denoising EEG Signals for Real-World BCI Applications Using GANs.
    Brophy E; Redmond P; Fleury A; De Vos M; Boylan G; Ward T
    Front Neuroergon; 2021; 2():805573. PubMed ID: 38235245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces.
    Lawhern VJ; Solon AJ; Waytowich NR; Gordon SM; Hung CP; Lance BJ
    J Neural Eng; 2018 Oct; 15(5):056013. PubMed ID: 29932424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding Multi-Class Motor Imagery and Motor Execution Tasks Using Riemannian Geometry Algorithms on Large EEG Datasets.
    Shuqfa Z; Belkacem AN; Lakas A
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 1D CNN for high accuracy classification and transfer learning in motor imagery EEG-based brain-computer interface.
    Mattioli F; Porcaro C; Baldassarre G
    J Neural Eng; 2022 Jan; 18(6):. PubMed ID: 34920443
    [No Abstract]   [Full Text] [Related]  

  • 19. EEG classification across sessions and across subjects through transfer learning in motor imagery-based brain-machine interface system.
    Zheng M; Yang B; Xie Y
    Med Biol Eng Comput; 2020 Jul; 58(7):1515-1528. PubMed ID: 32394192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emotion Recognition Based on EEG Using Generative Adversarial Nets and Convolutional Neural Network.
    Pan B; Zheng W
    Comput Math Methods Med; 2021; 2021():2520394. PubMed ID: 34671415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.