BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37038482)

  • 1. The ATPase activity of the phosphatidylethanolamine flippase TAT-5 inhibits extracellular vesicle budding from the plasma membrane.
    Pitts LR; Frondoni J; Nguyen AT; Wehman AM
    MicroPubl Biol; 2023; 2023():. PubMed ID: 37038482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular vesicle budding is inhibited by redundant regulators of TAT-5 flippase localization and phospholipid asymmetry.
    Beer KB; Rivas-Castillo J; Kuhn K; Fazeli G; Karmann B; Nance JF; Stigloher C; Wehman AM
    Proc Natl Acad Sci U S A; 2018 Feb; 115(6):E1127-E1136. PubMed ID: 29367422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The P4-ATPase TAT-5 inhibits the budding of extracellular vesicles in C. elegans embryos.
    Wehman AM; Poggioli C; Schweinsberg P; Grant BD; Nance J
    Curr Biol; 2011 Dec; 21(23):1951-9. PubMed ID: 22100064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conserved N- and C-terminal motifs of PAD-1 are required to inhibit extracellular vesicle release.
    Pitts LR; Nguyen AT; Wehman AM
    MicroPubl Biol; 2022; 2022():. PubMed ID: 36188098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of the Major Phosphatidylserine or Phosphatidylethanolamine Flippases Differentially Affect Phagocytosis.
    Fazeli G; Beer KB; Geisenhof M; Tröger S; König J; Müller-Reichert T; Wehman AM
    Front Cell Dev Biol; 2020; 8():648. PubMed ID: 32793595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopey-dependent regulation of extracellular vesicles maintains neuronal morphology.
    Park S; Noblett N; Pitts L; Colavita A; Wehman AM; Jin Y; Chisholm AD
    bioRxiv; 2024 May; ():. PubMed ID: 38766017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The phospholipid flippase activity of gastric vesicles.
    Suzuki H; Kamakura M; Morii M; Takeguchi N
    J Biol Chem; 1997 Apr; 272(16):10429-34. PubMed ID: 9099684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The P4-ATPase ATP9A is a novel determinant of exosome release.
    Naik J; Hau CM; Ten Bloemendaal L; Mok KS; Hajji N; Wehman AM; Meisner S; Muncan V; Paauw NJ; de Vries HE; Nieuwland R; Paulusma CC; Bosma PJ
    PLoS One; 2019; 14(4):e0213069. PubMed ID: 30947313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid specific activation of the murine P4-ATPase Atp8a1 (ATPase II).
    Paterson JK; Renkema K; Burden L; Halleck MS; Schlegel RA; Williamson P; Daleke DL
    Biochemistry; 2006 Apr; 45(16):5367-76. PubMed ID: 16618126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phospholipid flippase activities and substrate specificities of human type IV P-type ATPases localized to the plasma membrane.
    Takatsu H; Tanaka G; Segawa K; Suzuki J; Nagata S; Nakayama K; Shin HW
    J Biol Chem; 2014 Nov; 289(48):33543-56. PubMed ID: 25315773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of ATP9A on Extracellular Vesicle Release and Exosomal Lipid Composition.
    Xu X; Xu L; Zhang P; Ouyang K; Xiao Y; Xiong J; Wang D; Liang Y; Duan L
    Oxid Med Cell Longev; 2020; 2020():8865499. PubMed ID: 33178388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oviductal extracellular vesicles (oviductosomes, OVS) are conserved in humans: murine OVS play a pivotal role in sperm capacitation and fertility.
    Bathala P; Fereshteh Z; Li K; Al-Dossary AA; Galileo DS; Martin-DeLeon PA
    Mol Hum Reprod; 2018 Mar; 24(3):143-157. PubMed ID: 29370405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypoxia-induced HIF1α activation regulates small extracellular vesicle release in human embryonic kidney cells.
    Muñiz-García A; Romero M; Falcόn-Perez JM; Murray P; Zorzano A; Mora S
    Sci Rep; 2022 Jan; 12(1):1443. PubMed ID: 35087095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The CDC50A extracellular domain is required for forming a functional complex with and chaperoning phospholipid flippases to the plasma membrane.
    Segawa K; Kurata S; Nagata S
    J Biol Chem; 2018 Feb; 293(6):2172-2182. PubMed ID: 29276178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional Analysis of the P-Type ATPases Apt2-4 from
    Veit S; Laerbusch S; López-Marqués RL; Günther Pomorski T
    J Fungi (Basel); 2023 Feb; 9(2):. PubMed ID: 36836316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Routes and mechanisms of extracellular vesicle uptake.
    Mulcahy LA; Pink RC; Carter DR
    J Extracell Vesicles; 2014; 3():. PubMed ID: 25143819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cfs1p, a Novel Membrane Protein in the PQ-Loop Family, Is Involved in Phospholipid Flippase Functions in Yeast.
    Yamamoto T; Fujimura-Kamada K; Shioji E; Suzuki R; Tanaka K
    G3 (Bethesda); 2017 Jan; 7(1):179-192. PubMed ID: 28057802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms and functions of extracellular vesicle release in vivo-What we can learn from flies and worms.
    Beer KB; Wehman AM
    Cell Adh Migr; 2017 Mar; 11(2):135-150. PubMed ID: 27689411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. P-type ATPase TAT-2 negatively regulates monomethyl branched-chain fatty acid mediated function in post-embryonic growth and development in C. elegans.
    Seamen E; Blanchette JM; Han M
    PLoS Genet; 2009 Aug; 5(8):e1000589. PubMed ID: 19662161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and Functional Characterization of Fibronectin in Extracellular Vesicles From Hepatocytes.
    Li X; Chen R; Kemper S; Brigstock DR
    Front Cell Dev Biol; 2021; 9():640667. PubMed ID: 33816490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.