BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37038804)

  • 1. PAPNet: Convolutional network for pancreatic cyst segmentation.
    Li J; Yin W; Wang Y
    J Xray Sci Technol; 2023; 31(3):655-668. PubMed ID: 37038804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pancreas Segmentation in Abdominal CT Scans using Inter-/Intra-Slice Contextual Information with a Cascade Neural Network.
    Yang Z; Zhang L; Zhang M; Feng J; Wu Z; Ren F; Lv Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5937-5940. PubMed ID: 31947200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic mandible segmentation from CT image using 3D fully convolutional neural network based on DenseASPP and attention gates.
    Xu J; Liu J; Zhang D; Zhou Z; Jiang X; Zhang C; Chen X
    Int J Comput Assist Radiol Surg; 2021 Oct; 16(10):1785-1794. PubMed ID: 34287750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An iterative multi-path fully convolutional neural network for automatic cardiac segmentation in cine MR images.
    Ma Z; Wu X; Wang X; Song Q; Yin Y; Cao K; Wang Y; Zhou J
    Med Phys; 2019 Dec; 46(12):5652-5665. PubMed ID: 31605627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of a pyramid pooling Unet model with integrated attention mechanism and Inception module in pancreatic tumor segmentation.
    Zhang Z; Tian H; Xu Z; Bian Y; Wu J
    J Appl Clin Med Phys; 2023 Dec; 24(12):e14204. PubMed ID: 37937804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential Diagnosis for Pancreatic Cysts in CT Scans Using Densely-Connected Convolutional Networks.
    Li H; Shi K; Reichert M; Lin K; Tselousov N; Braren R; Fu D; Schmid R; Li J; Menze B
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2095-2098. PubMed ID: 31946314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HFRU-Net: High-Level Feature Fusion and Recalibration UNet for Automatic Liver and Tumor Segmentation in CT Images.
    Kushnure DT; Talbar SN
    Comput Methods Programs Biomed; 2022 Jan; 213():106501. PubMed ID: 34752959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multiple-channel and atrous convolution network for ultrasound image segmentation.
    Zhang L; Zhang J; Li Z; Song Y
    Med Phys; 2020 Dec; 47(12):6270-6285. PubMed ID: 33007105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cascaded atrous convolution and spatial pyramid pooling for more accurate tumor target segmentation for rectal cancer radiotherapy.
    Men K; Boimel P; Janopaul-Naylor J; Zhong H; Huang M; Geng H; Cheng C; Fan Y; Plastaras JP; Ben-Josef E; Xiao Y
    Phys Med Biol; 2018 Sep; 63(18):185016. PubMed ID: 30109986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DiSegNet: A deep dilated convolutional encoder-decoder architecture for lymph node segmentation on PET/CT images.
    Xu G; Cao H; Udupa JK; Tong Y; Torigian DA
    Comput Med Imaging Graph; 2021 Mar; 88():101851. PubMed ID: 33465588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extension-contraction transformation network for pancreas segmentation in abdominal CT scans.
    Zheng Y; Luo J
    Comput Biol Med; 2023 Jan; 152():106410. PubMed ID: 36516578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MAD-UNet: A deep U-shaped network combined with an attention mechanism for pancreas segmentation in CT images.
    Li W; Qin S; Li F; Wang L
    Med Phys; 2021 Jan; 48(1):329-341. PubMed ID: 33222222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PRAPNet: A Parallel Residual Atrous Pyramid Network for Polyp Segmentation.
    Han J; Xu C; An Z; Qian K; Tan W; Wang D; Fang Q
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-task edge-recalibrated network for male pelvic multi-organ segmentation on CT images.
    Tong N; Gou S; Chen S; Yao Y; Yang S; Cao M; Kishan A; Sheng K
    Phys Med Biol; 2021 Jan; 66(3):035001. PubMed ID: 33197901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Segmentation of ground glass pulmonary nodules using full convolution residual network based on atrous spatial pyramid pooling structure and attention mechanism].
    Dong T; Wei L; Ye X; Chen Y; Hou X; Nie S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Jun; 39(3):441-451. PubMed ID: 35788513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.
    Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH
    Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fusion network based on the dual attention mechanism and atrous spatial pyramid pooling for automatic segmentation in retinal vessel images.
    Liang B; Tang C; Xu M; Wu T; Lei Z
    J Opt Soc Am A Opt Image Sci Vis; 2022 Aug; 39(8):1393-1402. PubMed ID: 36215583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-scale Selection and Multi-channel Fusion Model for Pancreas Segmentation Using Adversarial Deep Convolutional Nets.
    Li M; Lian F; Guo S
    J Digit Imaging; 2022 Feb; 35(1):47-55. PubMed ID: 34921356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SAR-U-Net: Squeeze-and-excitation block and atrous spatial pyramid pooling based residual U-Net for automatic liver segmentation in Computed Tomography.
    Wang J; Lv P; Wang H; Shi C
    Comput Methods Programs Biomed; 2021 Sep; 208():106268. PubMed ID: 34274611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.