These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 37039471)
1. Chitosan-coated nanoliposomes for the enhanced stability of walnut angiotensin-converting enzyme (ACE) inhibitory peptide. Cao S; Hao J; Wang Y; Zhou X; Wang F J Food Sci; 2023 May; 88(5):2130-2140. PubMed ID: 37039471 [TBL] [Abstract][Full Text] [Related]
2. Effect of chitosan coating on the properties of nanoliposomes loaded with flaxseed-peptide fractions: Stability during spray-drying. Sarabandi K; Jafari SM Food Chem; 2020 Apr; 310():125951. PubMed ID: 31835229 [TBL] [Abstract][Full Text] [Related]
3. Preparation, characterization and stability of nanoliposomes loaded with peptides from defatted walnut ( Zhang G; Fang S; Regenstein JM; Wang F J Food Sci Technol; 2022 Aug; 59(8):3180-3191. PubMed ID: 35872726 [TBL] [Abstract][Full Text] [Related]
4. Incorporation of liposomes containing squid tunic ACE-inhibitory peptides into fish gelatin. Mosquera M; Giménez B; Montero P; Gómez-Guillén MC J Sci Food Agric; 2016 Feb; 96(3):769-76. PubMed ID: 25704896 [TBL] [Abstract][Full Text] [Related]
5. Biopolymer-coated nanoliposomes as carriers of rainbow trout skin-derived antioxidant peptides. Ramezanzade L; Hosseini SF; Nikkhah M Food Chem; 2017 Nov; 234():220-229. PubMed ID: 28551229 [TBL] [Abstract][Full Text] [Related]
6. Effect of chitosan coating on the properties of nanoliposomes loaded with oyster protein hydrolysates: Stability during spray-drying and freeze-drying. Ma Y; Xu J; Jiang S; Zeng M Food Chem; 2022 Aug; 385():132603. PubMed ID: 35259621 [TBL] [Abstract][Full Text] [Related]
7. Chitosan-coated nanoliposome: An approach for simultaneous encapsulation of caffeine and roselle-anthocyanin in beverages. Javadi B; Farahmand A; Soltani-Gorde-Faramarzi S; Hesarinejad MA Int J Biol Macromol; 2024 Aug; 275(Pt 1):133469. PubMed ID: 38945345 [TBL] [Abstract][Full Text] [Related]
8. Enhanced physicochemical stability and efficacy of angiotensin I-converting enzyme (ACE) - inhibitory biopeptides by chitosan nanoparticles optimized using Box-Behnken design. Auwal SM; Zarei M; Tan CP; Basri M; Saari N Sci Rep; 2018 Jul; 8(1):10411. PubMed ID: 29991723 [TBL] [Abstract][Full Text] [Related]
9. Encapsulation of oyster protein hydrolysates in nanoliposomes: Vesicle characteristics, storage stability, in vitro release, and gastrointestinal digestion. Xu J; Jiang S; Liu L; Zhao Y; Zeng M J Food Sci; 2021 Mar; 86(3):960-968. PubMed ID: 33527408 [TBL] [Abstract][Full Text] [Related]
10. Encapsulation of probiotic bacteria using polyelectrolytes stabilized nanoliposomes for improved viability under hostile conditions. Adeel M; Afzaal M; Saeed F; Ahmed A; Mahmood K; Abbas Shah Y; Ateeq H; Sibat A; Khan MR; Busquets R J Food Sci; 2023 Sep; 88(9):3839-3848. PubMed ID: 37530623 [TBL] [Abstract][Full Text] [Related]
11. Liposome System for Encapsulation of Forutan M; Hasani M; Hasani S; Salehi N; Sabbagh F Materials (Basel); 2022 Dec; 15(23):. PubMed ID: 36500077 [TBL] [Abstract][Full Text] [Related]
12. Zein/fucoidan-coated phytol nanoliposome: preparation, characterization, physicochemical stability, in vitro release, and antioxidant activity. Chen Y; Wang Y; He L; Wang L; Zhao J; Yang Z; Li Q; Shi R J Sci Food Agric; 2024 Sep; 104(12):7536-7549. PubMed ID: 38747177 [TBL] [Abstract][Full Text] [Related]
13. Enhanced physicochemical stability of ω-3 PUFAs concentrates-loaded nanoliposomes decorated by chitosan/gelatin blend coatings. Hosseini SF; Soofi M; Rezaei M Food Chem; 2021 May; 345():128865. PubMed ID: 33601664 [TBL] [Abstract][Full Text] [Related]
14. Novel angiotensin I-converting enzyme (ACE) inhibitory peptides from walnut protein isolate: Separation, identification and molecular docking study. Tang H; Wang C; Cao S; Wang F J Food Biochem; 2022 Dec; 46(12):e14411. PubMed ID: 36121201 [TBL] [Abstract][Full Text] [Related]
15. Phosphorylated walnut protein/chitosan nanocomplexes as promising carriers for encapsulation of caffeic acid phenethyl ester. Ling M; Xu Y; Huang X; He C; Zhou Z J Sci Food Agric; 2023 Sep; 103(12):5770-5781. PubMed ID: 37092785 [TBL] [Abstract][Full Text] [Related]
16. Comparative study of the properties of lutein nanoliposomes coated with chitosan/(-)-epigallocatechin- 3-gallate (EGCG) complexes. Yan H; Xu Y; Dai Z; Zhang Z; Bao Y; Li DJ J Sci Food Agric; 2023 May; 103(7):3306-3314. PubMed ID: 36737411 [TBL] [Abstract][Full Text] [Related]
17. Physicochemical and Antioxidant Properties of Nanoliposomes Loaded with Rosemary Oleoresin and Their Oxidative Stability Application in Dried Oysters. Cheng X; Zang M; Wang S; Zhao X; Zhai G; Wang L; Li X; Zhao Y; Yue Y Bioengineering (Basel); 2022 Dec; 9(12):. PubMed ID: 36551024 [TBL] [Abstract][Full Text] [Related]
18. Preparation, characterization and microencapsulation of walnut (Juglans regia L.) peptides-zinc chelate. Zhao S; Wang L; Liang J; Jin F; Wang F J Food Sci; 2024 Sep; 89(9):5618-5632. PubMed ID: 39126687 [TBL] [Abstract][Full Text] [Related]
19. Identification of an ACE-Inhibitory Peptide from Walnut Protein and Its Evaluation of the Inhibitory Mechanism. Wang C; Tu M; Wu D; Chen H; Chen C; Wang Z; Jiang L Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29641461 [TBL] [Abstract][Full Text] [Related]
20. Modifying the Stability and Surface Characteristic of Anthocyanin Compounds Incorporated in the Nanoliposome by Chitosan Biopolymer. Homayoonfal M; Mousavi M; Kiani H; Askari G; Desobry S; Arab-Tehrany E Pharmaceutics; 2022 Aug; 14(8):. PubMed ID: 36015248 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]