These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 37039606)

  • 1. Stretchable Low-Impedance Conductor with Ag-Au-Pt Core-Shell-Shell Nanowires and in Situ Formed Pt Nanoparticles for Wearable and Implantable Device.
    Sunwoo SH; Han SI; Jung D; Kim M; Nam S; Lee H; Choi S; Kang H; Cho YS; Yeom DH; Cha MJ; Lee S; Lee SP; Hyeon T; Kim DH
    ACS Nano; 2023 Apr; 17(8):7550-7561. PubMed ID: 37039606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics.
    Choi S; Han SI; Jung D; Hwang HJ; Lim C; Bae S; Park OK; Tschabrunn CM; Lee M; Bae SY; Yu JW; Ryu JH; Lee SW; Park K; Kang PM; Lee WB; Nezafat R; Hyeon T; Kim DH
    Nat Nanotechnol; 2018 Nov; 13(11):1048-1056. PubMed ID: 30104619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile and Scalable Synthesis of Whiskered Gold Nanosheets for Stretchable, Conductive, and Biocompatible Nanocomposites.
    Lim C; Park C; Sunwoo SH; Kim YG; Lee S; Han SI; Kim D; Kim JH; Kim DH; Hyeon T
    ACS Nano; 2022 Jul; 16(7):10431-10442. PubMed ID: 35766461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-Like Stretchable Nanocomposite Using Locally-Bundled Nanowires for Skin-Mountable Devices.
    Jung D; Kim Y; Lee H; Jung S; Park C; Hyeon T; Kim DH
    Adv Mater; 2023 Nov; 35(44):e2303458. PubMed ID: 37591512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase-separated stretchable conductive nanocomposite to reduce contact resistance of skin electronics.
    Lee H; Kim HJ; Shin Y; Kim DH
    Sci Rep; 2024 Jan; 14(1):1393. PubMed ID: 38228674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Material Design and Fabrication Strategies for Stretchable Metallic Nanocomposites.
    Joo H; Jung D; Sunwoo SH; Koo JH; Kim DH
    Small; 2020 Mar; 16(11):e1906270. PubMed ID: 32022440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Conductivity in Highly Stretchable Silver and Polymer Nanocomposite Conductors.
    Jin Nam H; Sun Kim Y; Jin Kim Y; Nam SY; Choa SH
    J Nanosci Nanotechnol; 2021 Jun; 21(6):3218-3226. PubMed ID: 34739777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Stretchable and Transparent Supercapacitor by Ag-Au Core-Shell Nanowire Network with High Electrochemical Stability.
    Lee H; Hong S; Lee J; Suh YD; Kwon J; Moon H; Kim H; Yeo J; Ko SH
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15449-58. PubMed ID: 27285849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A highly stretchable and conductive 3D porous graphene metal nanocomposite based electrochemical-physiological hybrid biosensor.
    Xuan X; Kim JY; Hui X; Das PS; Yoon HS; Park JY
    Biosens Bioelectron; 2018 Nov; 120():160-167. PubMed ID: 30173012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-Term Implantable, Flexible, and Transparent Neural Interface Based on Ag/Au Core-Shell Nanowires.
    Araki T; Yoshida F; Uemura T; Noda Y; Yoshimoto S; Kaiju T; Suzuki T; Hamanaka H; Baba K; Hayakawa H; Yabumoto T; Mochizuki H; Kobayashi S; Tanaka M; Hirata M; Sekitani T
    Adv Healthc Mater; 2019 May; 8(10):e1900130. PubMed ID: 30946540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ag/Au/Polypyrrole Core-shell Nanowire Network for Transparent, Stretchable and Flexible Supercapacitor in Wearable Energy Devices.
    Moon H; Lee H; Kwon J; Suh YD; Kim DK; Ha I; Yeo J; Hong S; Ko SH
    Sci Rep; 2017 Feb; 7():41981. PubMed ID: 28155913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly sensitive, flexible and biocompatible temperature sensor utilizing ultra-long Au@AgNW-based polymeric nanocomposites.
    Kumar A; Shaikh MO; Kumar RKR; Dutt K; Pan CT; Chuang CH
    Nanoscale; 2022 Feb; 14(5):1742-1754. PubMed ID: 35014657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peroxidase-mimicking nanozyme with surface-dispersed Pt atoms for the colorimetric lateral flow immunoassay of C-reactive protein.
    Panferov VG; Byzova NA; Zherdev AV; Dzantiev BB
    Mikrochim Acta; 2021 Aug; 188(9):309. PubMed ID: 34453188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Conductive and Compliant Silver Nanowire Nanocomposites by Direct Spray Deposition.
    Lin Y; Wang L; Ma T; Ding L; Cao S; Hu G; Zhang J; Ma X; Sun Y; Wang Q; Kong D
    ACS Appl Mater Interfaces; 2022 Dec; 14(51):57290-57298. PubMed ID: 36520145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly sensitive wearable strain sensor based on silver nanowires and nanoparticles.
    Shengbo S; Lihua L; Aoqun J; Qianqian D; Jianlong J; Qiang Z; Wendong Z
    Nanotechnology; 2018 Jun; 29(25):255202. PubMed ID: 29620014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Ag-N Bond Enhanced Stretchable Conductor for Transparent and Self-Healing Electronic Skin.
    Ye G; Song Z; Yu T; Tan Q; Zhang Y; Chen T; He C; Jin L; Liu N
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1486-1494. PubMed ID: 31793286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dispersed, porous nanoislands landing on stretchable nanocrack gold films: maintenance of stretchability and controllable impedance.
    Liu Z; Yu M; Lv J; Li Y; Yu Z
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13487-95. PubMed ID: 25090109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Stretchable and Transparent Electromagnetic Interference Shielding Film Based on Silver Nanowire Percolation Network for Wearable Electronics Applications.
    Jung J; Lee H; Ha I; Cho H; Kim KK; Kwon J; Won P; Hong S; Ko SH
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44609-44616. PubMed ID: 29188706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrastretchable and Self-Healing Conductors with Double Dynamic Network for Omni-Healable Capacitive Strain Sensors.
    Jiang PP; Qin H; Dai J; Yu SH; Cong HP
    Nano Lett; 2022 Feb; 22(3):1433-1442. PubMed ID: 34747171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-impedance tissue-device interface using homogeneously conductive hydrogels chemically bonded to stretchable bioelectronics.
    Shin Y; Lee HS; Hong YJ; Sunwoo SH; Park OK; Choi SH; Kim DH; Lee S
    Sci Adv; 2024 Mar; 10(12):eadi7724. PubMed ID: 38507496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.