These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37039650)

  • 1. Molecular Rotations, Multiscale Order, Hyperuniformity, and Signatures of Metastability during the Compression/Decompression Cycles of Amorphous Ices.
    Formanek M; Torquato S; Car R; Martelli F
    J Phys Chem B; 2023 May; 127(17):3946-3957. PubMed ID: 37039650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-Scale Structure and Hyperuniformity of Amorphous Ices.
    Martelli F; Torquato S; Giovambattista N; Car R
    Phys Rev Lett; 2017 Sep; 119(13):136002. PubMed ID: 29341697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase diagram of amorphous solid water: low-density, high-density, and very-high-density amorphous ices.
    Giovambattista N; Stanley HE; Sciortino F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031510. PubMed ID: 16241447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of high-density and low-density amorphous ice on biomolecules at cryogenic temperatures: a case study with polyalanine.
    Eltareb A; Lopez GE; Giovambattista N
    Phys Chem Chem Phys; 2021 Sep; 23(35):19402-19414. PubMed ID: 34494044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental study of the polyamorphism of water. I. The isobaric transitions from amorphous ices to LDA at 4 MPa.
    Handle PH; Loerting T
    J Chem Phys; 2018 Mar; 148(12):124508. PubMed ID: 29604853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Reorientation Dynamics Govern the Glass Transitions of the Amorphous Ices.
    Shephard JJ; Salzmann CG
    J Phys Chem Lett; 2016 Jun; 7(12):2281-5. PubMed ID: 27243277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heating- and pressure-induced transformations in amorphous and hexagonal ice: A computer simulation study using the TIP4P/2005 model.
    Engstler J; Giovambattista N
    J Chem Phys; 2017 Aug; 147(7):074505. PubMed ID: 28830166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure-induced transformations in computer simulations of glassy water.
    Chiu J; Starr FW; Giovambattista N
    J Chem Phys; 2013 Nov; 139(18):184504. PubMed ID: 24320281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glass and liquid phase diagram of a polyamorphic monatomic system.
    Reisman S; Giovambattista N
    J Chem Phys; 2013 Feb; 138(6):064509. PubMed ID: 23425481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential energy landscape of the apparent first-order phase transition between low-density and high-density amorphous ice.
    Giovambattista N; Sciortino F; Starr FW; Poole PH
    J Chem Phys; 2016 Dec; 145(22):224501. PubMed ID: 27984880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Waterlike glass polyamorphism in a monoatomic isotropic Jagla model.
    Xu L; Giovambattista N; Buldyrev SV; Debenedetti PG; Stanley HE
    J Chem Phys; 2011 Feb; 134(6):064507. PubMed ID: 21322705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal conductivity of normal and deuterated water, crystalline ice, and amorphous ices.
    Andersson O
    J Chem Phys; 2018 Sep; 149(12):124506. PubMed ID: 30278676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relaxation effects in low density amorphous ice: two distinct structural states observed by neutron diffraction.
    Winkel K; Bowron DT; Loerting T; Mayer E; Finney JL
    J Chem Phys; 2009 May; 130(20):204502. PubMed ID: 19485452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water.
    Chiu J; Starr FW; Giovambattista N
    J Chem Phys; 2014 Mar; 140(11):114504. PubMed ID: 24655190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal-like low frequency phonons in the low-density amorphous and high-density amorphous ices.
    Belosludov RV; Subbotin OS; Mizuseki H; Rodger PM; Kawazoe Y; Belosludov VR
    J Chem Phys; 2008 Sep; 129(11):114507. PubMed ID: 19044969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleation and growth of crystalline ices from amorphous ices.
    Tonauer CM; Fidler LR; Giebelmann J; Yamashita K; Loerting T
    J Chem Phys; 2023 Apr; 158(14):141001. PubMed ID: 37061482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Venture into Water's No Man's Land: Structural Transformations of Solid H_{2}O under Rapid Compression and Decompression.
    Lin C; Smith JS; Liu X; Tse JS; Yang W
    Phys Rev Lett; 2018 Nov; 121(22):225703. PubMed ID: 30547611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of the structure of amorphous ice: from low-density amorphous through high-density amorphous to very high-density amorphous ice.
    MartonĂ¡k R; Donadio D; Parrinello M
    J Chem Phys; 2005 Apr; 122(13):134501. PubMed ID: 15847475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic boundaries and phase transformations of ice i at high pressure.
    Wang Y; Zhang H; Yang X; Jiang S; Goncharov AF
    J Chem Phys; 2018 Jan; 148(4):044508. PubMed ID: 29390815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-density amorphous ice: nucleation of nanosized low-density amorphous ice.
    Tonauer CM; Seidl-Nigsch M; Loerting T
    J Phys Condens Matter; 2018 Jan; 30(3):034002. PubMed ID: 29189205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.