These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 37039989)
21. Water affects the stereochemistry and dioxygen reactivity of carboxylate-rich diiron(II) models for the diiron centers in dioxygen-dependent non-heme enzymes. Yoon S; Lippard SJ J Am Chem Soc; 2005 Jun; 127(23):8386-97. PubMed ID: 15941272 [TBL] [Abstract][Full Text] [Related]
22. A coupled dinuclear iron cluster that is perturbed by substrate binding in myo-inositol oxygenase. Xing G; Hoffart LM; Diao Y; Prabhu KS; Arner RJ; Reddy CC; Krebs C; Bollinger JM Biochemistry; 2006 May; 45(17):5393-401. PubMed ID: 16634620 [TBL] [Abstract][Full Text] [Related]
23. Oxygen activation by a mixed-valent, diiron(II/III) cluster in the glycol cleavage reaction catalyzed by myo-inositol oxygenase. Xing G; Barr EW; Diao Y; Hoffart LM; Prabhu KS; Arner RJ; Reddy CC; Krebs C; Bollinger JM Biochemistry; 2006 May; 45(17):5402-12. PubMed ID: 16634621 [TBL] [Abstract][Full Text] [Related]
24. Generation of a μ-1,2-hydroperoxo Fe Walleck S; Zimmermann TP; Hachmeister H; Pilger C; Huser T; Katz S; Hildebrandt P; Stammler A; Bögge H; Bill E; Glaser T Nat Commun; 2022 Mar; 13(1):1376. PubMed ID: 35296656 [TBL] [Abstract][Full Text] [Related]
25. VTVH-MCD and DFT studies of thiolate bonding to [FeNO]7/[FeO2]8 complexes of isopenicillin N synthase: substrate determination of oxidase versus oxygenase activity in nonheme Fe enzymes. Brown CD; Neidig ML; Neibergall MB; Lipscomb JD; Solomon EI J Am Chem Soc; 2007 Jun; 129(23):7427-38. PubMed ID: 17506560 [TBL] [Abstract][Full Text] [Related]
26. Modeling dioxygen-activating centers in non-heme diiron enzymes: carboxylate shifts in diiron(II) complexes supported by sterically hindered carboxylate ligands. Lee D; Lippard SJ Inorg Chem; 2002 May; 41(10):2704-19. PubMed ID: 12005495 [TBL] [Abstract][Full Text] [Related]
27. Mössbauer studies of the formation and reactivity of a quasi-stable peroxo intermediate of stearoyl-acyl carrier protein Delta 9-desaturase. Broadwater JA; Achim C; Münck E; Fox BG Biochemistry; 1999 Sep; 38(38):12197-204. PubMed ID: 10493786 [TBL] [Abstract][Full Text] [Related]
29. Dioxygen activation at non-heme diiron centers: characterization of intermediates in a mutant form of toluene/o-xylene monooxygenase hydroxylase. Murray LJ; García-Serres R; Naik S; Huynh BH; Lippard SJ J Am Chem Soc; 2006 Jun; 128(23):7458-9. PubMed ID: 16756297 [TBL] [Abstract][Full Text] [Related]
30. Dioxygen Activation by Nonheme Diiron Enzymes: Diverse Dioxygen Adducts, High-Valent Intermediates, and Related Model Complexes. Jasniewski AJ; Que L Chem Rev; 2018 Mar; 118(5):2554-2592. PubMed ID: 29400961 [TBL] [Abstract][Full Text] [Related]
31. Tetranuclear iron(III) complexes of an octadentate pyridine-carboxylate ligand and their catalytic activity in alkane oxidation by hydrogen peroxide. Gutkina EA; Trukhan VM; Pierpont CG; Mkoyan S; Strelets VV; Nordlander E; Shteinman AA Dalton Trans; 2006 Jan; (3):492-501. PubMed ID: 16395449 [TBL] [Abstract][Full Text] [Related]
32. Organophosphonate-degrading PhnZ reveals an emerging family of HD domain mixed-valent diiron oxygenases. Wörsdörfer B; Lingaraju M; Yennawar NH; Boal AK; Krebs C; Bollinger JM; Pandelia ME Proc Natl Acad Sci U S A; 2013 Nov; 110(47):18874-9. PubMed ID: 24198335 [TBL] [Abstract][Full Text] [Related]
33. An Fe2IVO2 diamond core structure for the key intermediate Q of methane monooxygenase. Shu L; Nesheim JC; Kauffmann K; Münck E; Lipscomb JD; Que L Science; 1997 Jan; 275(5299):515-8. PubMed ID: 8999792 [TBL] [Abstract][Full Text] [Related]
34. Use of Isotopes and Isotope Effects for Investigations of Diiron Oxygenase Mechanisms. Banerjee R; Komor AJ; Lipscomb JD Methods Enzymol; 2017; 596():239-290. PubMed ID: 28911774 [TBL] [Abstract][Full Text] [Related]
35. A new regime of heme-dependent aromatic oxygenase superfamily. Shin I; Wang Y; Liu A Proc Natl Acad Sci U S A; 2021 Oct; 118(43):. PubMed ID: 34667125 [TBL] [Abstract][Full Text] [Related]
36. Calculated Mechanism of Cyanobacterial Aldehyde-Deformylating Oxygenase: Asymmetric Aldehyde Activation by a Symmetric Diiron Cofactor. Wang C; Zhao C; Hu L; Chen H J Phys Chem Lett; 2016 Nov; 7(21):4427-4432. PubMed ID: 27775357 [TBL] [Abstract][Full Text] [Related]
37. Crystal structure of CmlI, the arylamine oxygenase from the chloramphenicol biosynthetic pathway. Knoot CJ; Kovaleva EG; Lipscomb JD J Biol Inorg Chem; 2016 Sep; 21(5-6):589-603. PubMed ID: 27229511 [TBL] [Abstract][Full Text] [Related]
38. C(sp Lu J; Lai W; Chen H Angew Chem Int Ed Engl; 2022 Nov; 61(46):e202211843. PubMed ID: 36087023 [TBL] [Abstract][Full Text] [Related]
39. Pathways for Arene Oxidation in Non-Heme Diiron Enzymes: Lessons from Computational Studies on Benzoyl Coenzyme A Epoxidase. Rokob TA J Am Chem Soc; 2016 Nov; 138(44):14623-14638. PubMed ID: 27682344 [TBL] [Abstract][Full Text] [Related]
40. Substrate-triggered addition of dioxygen to the diferrous cofactor of aldehyde-deformylating oxygenase to form a diferric-peroxide intermediate. Pandelia ME; Li N; Nørgaard H; Warui DM; Rajakovich LJ; Chang WC; Booker SJ; Krebs C; Bollinger JM J Am Chem Soc; 2013 Oct; 135(42):15801-12. PubMed ID: 23987523 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]