These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 370401)
21. Methionyl-tRNA synthetase from Escherichia coli: active stoichiometry and stopped-flow analysis of methionyl adenylate formaiton. Hyafil F; Jacques Y; Fayat G; Fromant M; Dessen P; Blanquet S Biochemistry; 1976 Aug; 15(17):3678-85. PubMed ID: 182214 [TBL] [Abstract][Full Text] [Related]
22. Conserved cysteine and histidine residues in the structures of the tyrosyl and methionyl-tRNA synthetases. Barker DG; Winter G FEBS Lett; 1982 Aug; 145(2):191-3. PubMed ID: 6751870 [No Abstract] [Full Text] [Related]
23. The recognition of methionine analogues by Escherichia coli methionyl-transfer ribonucleic acid synthetase. Old JM; Jones DS Biochem Soc Trans; 1975; 3(5):659-60. PubMed ID: 1104390 [No Abstract] [Full Text] [Related]
24. Neutron scattering studies of escherichia coli tyrosyl-trna synthetase and of its interaction with trna tyr. Dessen P; Zaccaï G; Blanquet S J Mol Biol; 1982 Aug; 159(4):651-64. PubMed ID: 6754952 [No Abstract] [Full Text] [Related]
25. tRNA recognition site of Escherichia coli methionyl-tRNA synthetase. Leon O; Schulman LH Biochemistry; 1987 Aug; 26(17):5416-22. PubMed ID: 3118944 [TBL] [Abstract][Full Text] [Related]
26. The mechanism of action of methionyl-tRNA synthetase. 3. Ion requirements and kinetic parameters of the ATP-PPi exchange and methionine-transfer reactions catalyzed by the native and trypsin-modified enzymes. Lawrence F; Blanquet S; Poiret M; Robert-Gero M; Waller JP Eur J Biochem; 1973 Jul; 36(1):234-43. PubMed ID: 4581819 [No Abstract] [Full Text] [Related]
27. Mechanism of aminoacylation of transfer RNA. A pre-steady-state analysis of the reaction pathway catalyzed by the methionyl-tRNA synthetase of Bacillus stearothermophilus. Mulvey RS; Fersht AR Biochemistry; 1978 Dec; 17(26):5591-7. PubMed ID: 728419 [No Abstract] [Full Text] [Related]
28. Reversible inactivation of Escherichia coli methionyl-tRNA synthetase by covalent attachment of formylmethionine tRNA to the tRNA binding site with a cleavable cross-linker. Schulman LH; Valenzuela D; Pelka H Biochemistry; 1981 Oct; 20(21):6018-23. PubMed ID: 7030381 [TBL] [Abstract][Full Text] [Related]
29. Covalent coupling of 4-thiouridine in the initiator methionine tRNA to specific lysine residues in Escherichia coli methionyl-tRNA synthetase. Leon O; Schulman LH Biochemistry; 1987 Nov; 26(22):7113-21. PubMed ID: 3122828 [TBL] [Abstract][Full Text] [Related]
30. Methionyl-tRNA synthetase induced 3'-terminal and delocalized conformational transition in tRNAfMet: steady-state fluorescence of tRNA with a single fluorophore. Ferguson BQ; Yang DC Biochemistry; 1986 Feb; 25(3):529-39. PubMed ID: 3513829 [TBL] [Abstract][Full Text] [Related]
31. Peptides at the tRNA binding site of the crystallizable monomeric form of E. coli methionyl-tRNA synthetase. Schulman LH; Pelka H; Leon O Nucleic Acids Res; 1987 Dec; 15(24):10523-30. PubMed ID: 3320968 [TBL] [Abstract][Full Text] [Related]
32. Recognition of tRNAs by aminoacyl-tRNA synthetases: Escherichia coli tRNAMet and E. coli methionyl-tRNA synthetase. Schulman LH; Pelka H Fed Proc; 1984 Dec; 43(15):2977-80. PubMed ID: 6389181 [TBL] [Abstract][Full Text] [Related]
33. Structural homology in the amino-terminal domains of two aminoacyl-tRNA synthetases. Blow DM; Bhat TN; Metcalfe A; Risler JL; Brunie S; Zelwer C J Mol Biol; 1983 Dec; 171(4):571-6. PubMed ID: 6363712 [TBL] [Abstract][Full Text] [Related]
34. tRNAfMet-induced conformational transition at the intersubunit domain of fluorescent-labeled methionyl-tRNA synthetase. Ferguson BQ; Yang DC Biochemistry; 1986 May; 25(10):2743-8. PubMed ID: 3636154 [TBL] [Abstract][Full Text] [Related]
35. rel-dependent methionine requirement in revertants of a methionyl-transfer RNA synthetase mutant of Escherichia coli. Somerville CR; Ahmed A J Mol Biol; 1977 Mar; 111(1):77-81. PubMed ID: 323499 [No Abstract] [Full Text] [Related]
36. Study of the interaction of Escherichia coli methionyl-tRNA synthetase with tRNAfMet using chemical and enzymatic probes. Pelka H; Schulman LH Biochemistry; 1986 Jul; 25(15):4450-6. PubMed ID: 3092857 [TBL] [Abstract][Full Text] [Related]
37. Methionyl-tRNA synthetase from Escherichia coli. Primary structure of the active crystallised tryptic fragment. Barker DG; Ebel JP; Jakes R; Bruton CJ Eur J Biochem; 1982 Oct; 127(3):449-57. PubMed ID: 6756915 [TBL] [Abstract][Full Text] [Related]
38. Effect of a domain-spanning disulfide on aminoacyl-tRNA synthetase activity. Banerjee P; Warf MB; Alexander R Biochemistry; 2009 Oct; 48(42):10113-9. PubMed ID: 19772352 [TBL] [Abstract][Full Text] [Related]
39. Topographic modeling of free and methionyl-tRNA synthetase bound tRNAfMet by singlet-singlet energy transfer: bending of the 3'-terminal arm in tRNAfMet. Ferguson BQ; Yang DC Biochemistry; 1986 Oct; 25(21):6572-8. PubMed ID: 3641634 [TBL] [Abstract][Full Text] [Related]
40. Structural similarities in glutaminyl- and methionyl-tRNA synthetases suggest a common overall orientation of tRNA binding. Perona JJ; Rould MA; Steitz TA; Risler JL; Zelwer C; Brunie S Proc Natl Acad Sci U S A; 1991 Apr; 88(7):2903-7. PubMed ID: 2011598 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]