These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 37040407)
1. Expansion of the sagittal suture induces proliferation of skeletal stem cells and sustains endogenous calvarial bone regeneration. Aldawood ZA; Mancinelli L; Geng X; Yeh SA; Di Carlo R; C Leite T; Gustafson J; Wilk K; Yozgatian J; Garakani S; Bassir SH; Cunningham ML; Lin CP; Intini G Proc Natl Acad Sci U S A; 2023 Apr; 120(16):e2120826120. PubMed ID: 37040407 [TBL] [Abstract][Full Text] [Related]
2. Postnatal Calvarial Skeletal Stem Cells Expressing PRX1 Reside Exclusively in the Calvarial Sutures and Are Required for Bone Regeneration. Wilk K; Yeh SA; Mortensen LJ; Ghaffarigarakani S; Lombardo CM; Bassir SH; Aldawood ZA; Lin CP; Intini G Stem Cell Reports; 2017 Apr; 8(4):933-946. PubMed ID: 28366454 [TBL] [Abstract][Full Text] [Related]
3. Sutures Possess Strong Regenerative Capacity for Calvarial Bone Injury. Park S; Zhao H; Urata M; Chai Y Stem Cells Dev; 2016 Dec; 25(23):1801-1807. PubMed ID: 27762665 [TBL] [Abstract][Full Text] [Related]
4. Bone and suture regeneration in calvarial defects by e-PTFE-membranes and demineralized bone matrix and the impact on calvarial growth: an experimental study in the rat. Mardas N; Kostopoulos L; Karring T J Craniofac Surg; 2002 May; 13(3):453-62; discussion 462-4. PubMed ID: 12040218 [TBL] [Abstract][Full Text] [Related]
5. Cranial suture lineage and contributions to repair of the mouse skull. Doro D; Liu A; Lau JS; Rajendran AK; Healy C; Krstic M; Grigoriadis AE; Iseki S; Liu KJ Development; 2024 Feb; 151(3):. PubMed ID: 38345329 [TBL] [Abstract][Full Text] [Related]
6. Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration. Maruyama T Keio J Med; 2019; 68(2):42. PubMed ID: 31243185 [TBL] [Abstract][Full Text] [Related]
7. Nell-1-induced bone regeneration in calvarial defects. Aghaloo T; Cowan CM; Chou YF; Zhang X; Lee H; Miao S; Hong N; Kuroda S; Wu B; Ting K; Soo C Am J Pathol; 2006 Sep; 169(3):903-15. PubMed ID: 16936265 [TBL] [Abstract][Full Text] [Related]
8. FGF-, BMP- and Shh-mediated signalling pathways in the regulation of cranial suture morphogenesis and calvarial bone development. Kim HJ; Rice DP; Kettunen PJ; Thesleff I Development; 1998 Apr; 125(7):1241-51. PubMed ID: 9477322 [TBL] [Abstract][Full Text] [Related]
9. Skeletal stem and progenitor cells maintain cranial suture patency and prevent craniosynostosis. Menon S; Salhotra A; Shailendra S; Tevlin R; Ransom RC; Januszyk M; Chan CKF; Behr B; Wan DC; Longaker MT; Quarto N Nat Commun; 2021 Jul; 12(1):4640. PubMed ID: 34330896 [TBL] [Abstract][Full Text] [Related]
10. Studies in cranial suture biology: up-regulation of transforming growth factor-beta1 and basic fibroblast growth factor mRNA correlates with posterior frontal cranial suture fusion in the rat. Most D; Levine JP; Chang J; Sung J; McCarthy JG; Schendel SA; Longaker MT Plast Reconstr Surg; 1998 May; 101(6):1431-40. PubMed ID: 9583470 [TBL] [Abstract][Full Text] [Related]
11. Prx1 Expressing Cells Are Required for Periodontal Regeneration of the Mouse Incisor. Bassir SH; Garakani S; Wilk K; Aldawood ZA; Hou J; Yeh SA; Sfeir C; Lin CP; Intini G Front Physiol; 2019; 10():591. PubMed ID: 31231227 [TBL] [Abstract][Full Text] [Related]
12. The Establishment of Calvarial Suture-Bony Composite Defects in Rats: A Standardized Model for Suture-Regenerative Therapy Investigation. Wu J; Yu C; Han C; Li F; Wang H; Yin B J Vis Exp; 2024 May; (207):. PubMed ID: 38801271 [TBL] [Abstract][Full Text] [Related]
13. Dihydrotestosterone stimulates proliferation and differentiation of fetal calvarial osteoblasts and dural cells and induces cranial suture fusion. Lin IC; Slemp AE; Hwang C; Sena-Esteves M; Nah HD; Kirschner RE Plast Reconstr Surg; 2007 Oct; 120(5):1137-1147. PubMed ID: 17898587 [TBL] [Abstract][Full Text] [Related]
14. Transforming growth factor beta 1 augments calvarial defect healing and promotes suture regeneration. Shakir S; MacIsaac ZM; Naran S; Smith DM; Bykowski MR; Cray JJ; Craft TK; Wang D; Weiss L; Campbell PG; Mooney MP; Losee JE; Cooper GM Tissue Eng Part A; 2015 Mar; 21(5-6):939-47. PubMed ID: 25380311 [TBL] [Abstract][Full Text] [Related]
15. Unravelling the molecular control of calvarial suture fusion in children with craniosynostosis. Coussens AK; Wilkinson CR; Hughes IP; Morris CP; van Daal A; Anderson PJ; Powell BC BMC Genomics; 2007 Dec; 8():458. PubMed ID: 18076769 [TBL] [Abstract][Full Text] [Related]
16. Regeneration of the sagittal suture by GTR and its impact on growth of the cranial vault. Kostopoulos L; Karring T J Craniofac Surg; 2000 Nov; 11(6):553-61. PubMed ID: 11314496 [TBL] [Abstract][Full Text] [Related]
18. The Mohawk homeobox gene represents a marker and osteo-inhibitory factor in calvarial suture osteoprogenitor cells. Wang Y; Qin Q; Wang Z; Negri S; Sono T; Tower RJ; Li Z; Xing X; Archer M; Thottappillil N; Zhu M; Suarez A; Kim DH; Harvey T; Fan CM; James AW Cell Death Dis; 2024 Jun; 15(6):420. PubMed ID: 38886383 [TBL] [Abstract][Full Text] [Related]
19. Osteopontin expression in osteoblasts and osteocytes during bone formation under mechanical stress in the calvarial suture in vivo. Morinobu M; Ishijima M; Rittling SR; Tsuji K; Yamamoto H; Nifuji A; Denhardt DT; Noda M J Bone Miner Res; 2003 Sep; 18(9):1706-15. PubMed ID: 12968681 [TBL] [Abstract][Full Text] [Related]
20. Opposite spectrum of activity of canonical Wnt signaling in the osteogenic context of undifferentiated and differentiated mesenchymal cells: implications for tissue engineering. Quarto N; Behr B; Longaker MT Tissue Eng Part A; 2010 Oct; 16(10):3185-97. PubMed ID: 20590472 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]