BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 37040407)

  • 1. Expansion of the sagittal suture induces proliferation of skeletal stem cells and sustains endogenous calvarial bone regeneration.
    Aldawood ZA; Mancinelli L; Geng X; Yeh SA; Di Carlo R; C Leite T; Gustafson J; Wilk K; Yozgatian J; Garakani S; Bassir SH; Cunningham ML; Lin CP; Intini G
    Proc Natl Acad Sci U S A; 2023 Apr; 120(16):e2120826120. PubMed ID: 37040407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postnatal Calvarial Skeletal Stem Cells Expressing PRX1 Reside Exclusively in the Calvarial Sutures and Are Required for Bone Regeneration.
    Wilk K; Yeh SA; Mortensen LJ; Ghaffarigarakani S; Lombardo CM; Bassir SH; Aldawood ZA; Lin CP; Intini G
    Stem Cell Reports; 2017 Apr; 8(4):933-946. PubMed ID: 28366454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sutures Possess Strong Regenerative Capacity for Calvarial Bone Injury.
    Park S; Zhao H; Urata M; Chai Y
    Stem Cells Dev; 2016 Dec; 25(23):1801-1807. PubMed ID: 27762665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone and suture regeneration in calvarial defects by e-PTFE-membranes and demineralized bone matrix and the impact on calvarial growth: an experimental study in the rat.
    Mardas N; Kostopoulos L; Karring T
    J Craniofac Surg; 2002 May; 13(3):453-62; discussion 462-4. PubMed ID: 12040218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cranial suture lineage and contributions to repair of the mouse skull.
    Doro D; Liu A; Lau JS; Rajendran AK; Healy C; Krstic M; Grigoriadis AE; Iseki S; Liu KJ
    Development; 2024 Feb; 151(3):. PubMed ID: 38345329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration.
    Maruyama T
    Keio J Med; 2019; 68(2):42. PubMed ID: 31243185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nell-1-induced bone regeneration in calvarial defects.
    Aghaloo T; Cowan CM; Chou YF; Zhang X; Lee H; Miao S; Hong N; Kuroda S; Wu B; Ting K; Soo C
    Am J Pathol; 2006 Sep; 169(3):903-15. PubMed ID: 16936265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FGF-, BMP- and Shh-mediated signalling pathways in the regulation of cranial suture morphogenesis and calvarial bone development.
    Kim HJ; Rice DP; Kettunen PJ; Thesleff I
    Development; 1998 Apr; 125(7):1241-51. PubMed ID: 9477322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prx1 Expressing Cells Are Required for Periodontal Regeneration of the Mouse Incisor.
    Bassir SH; Garakani S; Wilk K; Aldawood ZA; Hou J; Yeh SA; Sfeir C; Lin CP; Intini G
    Front Physiol; 2019; 10():591. PubMed ID: 31231227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies in cranial suture biology: up-regulation of transforming growth factor-beta1 and basic fibroblast growth factor mRNA correlates with posterior frontal cranial suture fusion in the rat.
    Most D; Levine JP; Chang J; Sung J; McCarthy JG; Schendel SA; Longaker MT
    Plast Reconstr Surg; 1998 May; 101(6):1431-40. PubMed ID: 9583470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dihydrotestosterone stimulates proliferation and differentiation of fetal calvarial osteoblasts and dural cells and induces cranial suture fusion.
    Lin IC; Slemp AE; Hwang C; Sena-Esteves M; Nah HD; Kirschner RE
    Plast Reconstr Surg; 2007 Oct; 120(5):1137-1147. PubMed ID: 17898587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unravelling the molecular control of calvarial suture fusion in children with craniosynostosis.
    Coussens AK; Wilkinson CR; Hughes IP; Morris CP; van Daal A; Anderson PJ; Powell BC
    BMC Genomics; 2007 Dec; 8():458. PubMed ID: 18076769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regeneration of the sagittal suture by GTR and its impact on growth of the cranial vault.
    Kostopoulos L; Karring T
    J Craniofac Surg; 2000 Nov; 11(6):553-61. PubMed ID: 11314496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transforming growth factor beta 1 augments calvarial defect healing and promotes suture regeneration.
    Shakir S; MacIsaac ZM; Naran S; Smith DM; Bykowski MR; Cray JJ; Craft TK; Wang D; Weiss L; Campbell PG; Mooney MP; Losee JE; Cooper GM
    Tissue Eng Part A; 2015 Mar; 21(5-6):939-47. PubMed ID: 25380311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Runx2 regulates cranial suture closure by inducing hedgehog, Fgf, Wnt and Pthlh signaling pathway gene expressions in suture mesenchymal cells.
    Qin X; Jiang Q; Miyazaki T; Komori T
    Hum Mol Genet; 2019 Mar; 28(6):896-911. PubMed ID: 30445456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteopontin expression in osteoblasts and osteocytes during bone formation under mechanical stress in the calvarial suture in vivo.
    Morinobu M; Ishijima M; Rittling SR; Tsuji K; Yamamoto H; Nifuji A; Denhardt DT; Noda M
    J Bone Miner Res; 2003 Sep; 18(9):1706-15. PubMed ID: 12968681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opposite spectrum of activity of canonical Wnt signaling in the osteogenic context of undifferentiated and differentiated mesenchymal cells: implications for tissue engineering.
    Quarto N; Behr B; Longaker MT
    Tissue Eng Part A; 2010 Oct; 16(10):3185-97. PubMed ID: 20590472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 3-D Visualization Technique for Bone Remodeling in a Suture Expansion Mouse Model.
    Ding Z; Li R; Duan Y; Li Z; Fang B; Jing D
    J Vis Exp; 2023 Aug; (198):. PubMed ID: 37607095
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Murphy MP; Quarto N; Longaker MT; Wan DC
    Tissue Eng Part C Methods; 2017 Dec; 23(12):971-981. PubMed ID: 28825366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfocal CT: a method for evaluating murine cranial sutures in situ.
    Recinos RF; Hanger CC; Schaefer RB; Dawson CA; Gosain AK
    J Surg Res; 2004 Feb; 116(2):322-9. PubMed ID: 15013372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.