These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37040478)

  • 1. Rotating Surfaces Promote the Shedding of Droplets.
    Tao R; Fang W; Wu J; Dou B; Xu W; Zheng Z; Li B; Wang Z; Feng X; Hao C
    Research (Wash D C); 2023; 6():0023. PubMed ID: 37040478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ricocheting Droplets Moving on Super-Repellent Surfaces.
    Pan S; Guo R; Richardson JJ; Berry JD; Besford QA; Björnmalm M; Yun G; Wu R; Lin Z; Zhong QZ; Zhou J; Sun Q; Li J; Lu Y; Dong Z; Banks MK; Xu W; Jiang J; Jiang L; Caruso F
    Adv Sci (Weinh); 2019 Nov; 6(21):1901846. PubMed ID: 31728297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of superamphiphobic macrotextures on dynamics of viscous liquid droplets.
    Raiyan A; Mclaughlin TS; Annavarapu RK; Sojoudi H
    Sci Rep; 2018 Oct; 8(1):15344. PubMed ID: 30337604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanism and universal scaling law of the contact line friction for the Cassie-state droplets on nanostructured ultrahydrophobic surfaces.
    Zhao L; Cheng J
    Nanoscale; 2018 Apr; 10(14):6426-6436. PubMed ID: 29564459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new scaling number reveals droplet dynamics on vibratory surfaces.
    Song M; Zhao H; Wang T; Wang S; Wan J; Qin X; Wang Z
    J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2414-2420. PubMed ID: 34753623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oblique impingement of binary droplets at the nanoscale on superhydrophobic surfaces: A molecular dynamics study.
    Zhang A; Cui K; Tian Y; Zhang B; Wang T; He X
    J Chem Phys; 2024 May; 160(17):. PubMed ID: 38748016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coalescence-Induced Jumping of Two Unequal-Sized Nanodroplets.
    Xie FF; Lu G; Wang XD; Wang BB
    Langmuir; 2018 Feb; 34(8):2734-2740. PubMed ID: 29384379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic effects of bouncing water droplets on superhydrophobic surfaces.
    Jung YC; Bhushan B
    Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards the shortest possible contact time: Droplet impact on cylindrical superhydrophobic surfaces structured with macro-scale features.
    Abolghasemibizaki M; McMasters RL; Mohammadi R
    J Colloid Interface Sci; 2018 Jul; 521():17-23. PubMed ID: 29547785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bouncing dynamics of droplets on nanopillar-arrayed surfaces: the effect of impact position.
    Zhu S; Ren H; Li X; Xiao Y; Li C
    Phys Chem Chem Phys; 2023 Feb; 25(6):4969-4979. PubMed ID: 36722908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonspecular Reflection of Droplets.
    Zhu P; Chen C; Nandakumar K; Wang L
    Small; 2021 Jan; 17(3):e2006695. PubMed ID: 33345437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capillary origami: superhydrophobic ribbon surfaces and liquid marbles.
    McHale G; Newton MI; Shirtcliffe NJ; Geraldi NR
    Beilstein J Nanotechnol; 2011; 2():145-51. PubMed ID: 21977426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaporation of Sessile Droplets on Slippery Liquid-Infused Porous Surfaces (SLIPS).
    Guan JH; Wells GG; Xu B; McHale G; Wood D; Martin J; Stuart-Cole S
    Langmuir; 2015 Nov; 31(43):11781-9. PubMed ID: 26446177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Droplets Can Rebound toward Both Directions on Textured Surfaces with a Wettability Gradient.
    Zhang B; Lei Q; Wang Z; Zhang X
    Langmuir; 2016 Jan; 32(1):346-51. PubMed ID: 26669260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steerable directional bouncing and contact time reduction of impacting droplets on superhydrophobic stepped surfaces.
    Du J; Li Y; Wu X; Min Q
    J Colloid Interface Sci; 2023 Jan; 629(Pt A):1032-1044. PubMed ID: 36154970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow.
    Shigorina E; Kordilla J; Tartakovsky AM
    Phys Rev E; 2017 Sep; 96(3-1):033115. PubMed ID: 29346900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lubricant-Mediated Strong Droplet Adhesion on Lubricant-Impregnated Surfaces.
    Li J; Li W; Tang X; Han X; Wang L
    Langmuir; 2021 Jul; 37(28):8607-8615. PubMed ID: 34213350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of viscous droplets on different wettable surfaces: Impact phenomena, the maximum spreading factor, spreading time and post-impact oscillation.
    Lin S; Zhao B; Zou S; Guo J; Wei Z; Chen L
    J Colloid Interface Sci; 2018 Apr; 516():86-97. PubMed ID: 29360059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscosity-enhanced droplet motion in sealed superhydrophobic capillaries.
    Vuckovac M; Backholm M; Timonen JVI; Ras RHA
    Sci Adv; 2020 Oct; 6(42):. PubMed ID: 33067224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.