BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37040495)

  • 1. Rice Plant Counting, Locating, and Sizing Method Based on High-Throughput UAV RGB Images.
    Bai X; Liu P; Cao Z; Lu H; Xiong H; Yang A; Cai Z; Wang J; Yao J
    Plant Phenomics; 2023; 5():0020. PubMed ID: 37040495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic rape flower cluster counting method based on low-cost labelling and UAV-RGB images.
    Li J; Wang E; Qiao J; Li Y; Li L; Yao J; Liao G
    Plant Methods; 2023 Apr; 19(1):40. PubMed ID: 37095540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic counting of rapeseed inflorescences using deep learning method and UAV RGB imagery.
    Li J; Li Y; Qiao J; Li L; Wang X; Yao J; Liao G
    Front Plant Sci; 2023; 14():1101143. PubMed ID: 36798713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rice Crop Counting Using Aerial Imagery and GIS for the Assessment of Soil Health to Increase Crop Yield.
    Hassan SI; Alam MM; Zia MYI; Rashid M; Illahi U; Su'ud MM
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ramie Yield Estimation Based on UAV RGB Images.
    Fu H; Wang C; Cui G; She W; Zhao L
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated Counting of Rice Panicle by Applying Deep Learning Model to Images from Unmanned Aerial Vehicle Platform.
    Zhou C; Ye H; Hu J; Shi X; Hua S; Yue J; Xu Z; Yang G
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31337086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of Unmanned Aerial Vehicle Imagery and Deep Learning UNet to Extract Rice Lodging.
    Zhao X; Yuan Y; Song M; Ding Y; Lin F; Liang D; Zhang D
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31500150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Throughput Rice Density Estimation from Transplantation to Tillering Stages Using Deep Networks.
    Liu L; Lu H; Li Y; Cao Z
    Plant Phenomics; 2020; 2020():1375957. PubMed ID: 33313541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The estimation of crop emergence in potatoes by UAV RGB imagery.
    Li B; Xu X; Han J; Zhang L; Bian C; Jin L; Liu J
    Plant Methods; 2019; 15():15. PubMed ID: 30792752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating and evaluating the rice cluster distribution uniformity with UAV-based images.
    Wang X; Tang Q; Chen Z; Luo Y; Fu H; Li X
    Sci Rep; 2021 Nov; 11(1):21442. PubMed ID: 34728745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic wheat ear counting using machine learning based on RGB UAV imagery.
    Fernandez-Gallego JA; Lootens P; Borra-Serrano I; Derycke V; Haesaert G; Roldán-Ruiz I; Araus JL; Kefauver SC
    Plant J; 2020 Aug; 103(4):1603-1613. PubMed ID: 32369641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remote estimation of leaf area index (LAI) with unmanned aerial vehicle (UAV) imaging for different rice cultivars throughout the entire growing season.
    Gong Y; Yang K; Lin Z; Fang S; Wu X; Zhu R; Peng Y
    Plant Methods; 2021 Aug; 17(1):88. PubMed ID: 34376195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapeseed Seedling Stand Counting and Seeding Performance Evaluation at Two Early Growth Stages Based on Unmanned Aerial Vehicle Imagery.
    Zhao B; Zhang J; Yang C; Zhou G; Ding Y; Shi Y; Zhang D; Xie J; Liao Q
    Front Plant Sci; 2018; 9():1362. PubMed ID: 30298081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining UAV-RGB high-throughput field phenotyping and genome-wide association study to reveal genetic variation of rice germplasms in dynamic response to drought stress.
    Jiang Z; Tu H; Bai B; Yang C; Zhao B; Guo Z; Liu Q; Zhao H; Yang W; Xiong L; Zhang J
    New Phytol; 2021 Oct; 232(1):440-455. PubMed ID: 34165797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of plant height and yield based on UAV imagery in faba bean (Vicia faba L.).
    Ji Y; Chen Z; Cheng Q; Liu R; Li M; Yan X; Li G; Wang D; Fu L; Ma Y; Jin X; Zong X; Yang T
    Plant Methods; 2022 Mar; 18(1):26. PubMed ID: 35246179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rice Ear Counting Based on Image Segmentation and Establishment of a Dataset.
    Shao H; Tang R; Lei Y; Mu J; Guan Y; Xiang Y
    Plants (Basel); 2021 Aug; 10(8):. PubMed ID: 34451670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of cotton canopy parameters based on unmanned aerial vehicle (UAV) oblique photography.
    Wu J; Wen S; Lan Y; Yin X; Zhang J; Ge Y
    Plant Methods; 2022 Dec; 18(1):129. PubMed ID: 36482426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of Rice Yield Using UAV-Based Hyperspectral Imagery and Lodging Feature.
    Wang J; Wu B; Kohnen MV; Lin D; Yang C; Wang X; Qiang A; Liu W; Kang J; Li H; Shen J; Yao T; Su J; Li B; Gu L
    Plant Phenomics; 2021; 2021():9765952. PubMed ID: 33851136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining Unmanned Aerial Vehicle (UAV)-Based Multispectral Imagery and Ground-Based Hyperspectral Data for Plant Nitrogen Concentration Estimation in Rice.
    Zheng H; Cheng T; Li D; Yao X; Tian Y; Cao W; Zhu Y
    Front Plant Sci; 2018; 9():936. PubMed ID: 30034405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic estimation of heading date of paddy rice using deep learning.
    Desai SV; Balasubramanian VN; Fukatsu T; Ninomiya S; Guo W
    Plant Methods; 2019; 15():76. PubMed ID: 31338116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.