These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 37040735)

  • 1. Computational Methods for Single-Cell Proteomics.
    Guldberg SM; Okholm TLH; McCarthy EE; Spitzer MH
    Annu Rev Biomed Data Sci; 2023 Aug; 6():47-71. PubMed ID: 37040735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single cell proteomics in biomedicine: High-dimensional data acquisition, visualization, and analysis.
    Su Y; Shi Q; Wei W
    Proteomics; 2017 Feb; 17(3-4):. PubMed ID: 28128880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-depth analysis of protein inference algorithms using multiple search engines and well-defined metrics.
    Audain E; Uszkoreit J; Sachsenberg T; Pfeuffer J; Liang X; Hermjakob H; Sanchez A; Eisenacher M; Reinert K; Tabb DL; Kohlbacher O; Perez-Riverol Y
    J Proteomics; 2017 Jan; 150():170-182. PubMed ID: 27498275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NetProt: Complex-based Feature Selection.
    Goh WWB; Wong L
    J Proteome Res; 2017 Aug; 16(8):3102-3112. PubMed ID: 28664733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of single-cell trajectory inference methods.
    Saelens W; Cannoodt R; Todorov H; Saeys Y
    Nat Biotechnol; 2019 May; 37(5):547-554. PubMed ID: 30936559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein Inference Using PIA Workflows and PSI Standard File Formats.
    Uszkoreit J; Perez-Riverol Y; Eggers B; Marcus K; Eisenacher M
    J Proteome Res; 2019 Feb; 18(2):741-747. PubMed ID: 30474983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational proteomics: designing a comprehensive analytical strategy.
    Goh WW; Wong L
    Drug Discov Today; 2014 Mar; 19(3):266-74. PubMed ID: 23872277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MS1-based label-free proteomics using a quadrupole orbitrap mass spectrometer.
    Shalit T; Elinger D; Savidor A; Gabashvili A; Levin Y
    J Proteome Res; 2015 Apr; 14(4):1979-86. PubMed ID: 25780947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Online tools for bioinformatics analyses in nutrition sciences.
    Malkaram SA; Hassan YI; Zempleni J
    Adv Nutr; 2012 Sep; 3(5):654-65. PubMed ID: 22983844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchmarking single cell RNA-sequencing analysis pipelines using mixture control experiments.
    Tian L; Dong X; Freytag S; Lê Cao KA; Su S; JalalAbadi A; Amann-Zalcenstein D; Weber TS; Seidi A; Jabbari JS; Naik SH; Ritchie ME
    Nat Methods; 2019 Jun; 16(6):479-487. PubMed ID: 31133762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. apQuant: Accurate Label-Free Quantification by Quality Filtering.
    Doblmann J; Dusberger F; Imre R; Hudecz O; Stanek F; Mechtler K; Dürnberger G
    J Proteome Res; 2019 Jan; 18(1):535-541. PubMed ID: 30351950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and computational technologies to dissect the kidney at the single-cell level.
    Kuppe C; Perales-Patón J; Saez-Rodriguez J; Kramann R
    Nephrol Dial Transplant; 2022 Mar; 37(4):628-637. PubMed ID: 33332571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corra: Computational framework and tools for LC-MS discovery and targeted mass spectrometry-based proteomics.
    Brusniak MY; Bodenmiller B; Campbell D; Cooke K; Eddes J; Garbutt A; Lau H; Letarte S; Mueller LN; Sharma V; Vitek O; Zhang N; Aebersold R; Watts JD
    BMC Bioinformatics; 2008 Dec; 9():542. PubMed ID: 19087345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep-Learning-Derived Evaluation Metrics Enable Effective Benchmarking of Computational Tools for Phosphopeptide Identification.
    Jiang W; Wen B; Li K; Zeng WF; da Veiga Leprevost F; Moon J; Petyuk VA; Edwards NJ; Liu T; Nesvizhskii AI; Zhang B
    Mol Cell Proteomics; 2021; 20():100171. PubMed ID: 34737085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational methods and biomarker discovery strategies for spatial proteomics: a review in immuno-oncology.
    Mi H; Sivagnanam S; Ho WJ; Zhang S; Bergman D; Deshpande A; Baras AS; Jaffee EM; Coussens LM; Fertig EJ; Popel AS
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39179248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Proteomics with Jupyter and Python.
    Malmström L
    Methods Mol Biol; 2019; 1977():237-248. PubMed ID: 30980332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinformatics Resources for Interpreting Proteomics Mass Spectrometry Data.
    Lazar IM
    Methods Mol Biol; 2017; 1647():267-295. PubMed ID: 28809010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CoreFlow: a computational platform for integration, analysis and modeling of complex biological data.
    Pasculescu A; Schoof EM; Creixell P; Zheng Y; Olhovsky M; Tian R; So J; Vanderlaan RD; Pawson T; Linding R; Colwill K
    J Proteomics; 2014 Apr; 100():167-73. PubMed ID: 24503186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent developments in public proteomic MS repositories and pipelines.
    Mead JA; Bianco L; Bessant C
    Proteomics; 2009 Feb; 9(4):861-81. PubMed ID: 19212957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From raw data to biological discoveries: a computational analysis pipeline for mass spectrometry-based proteomics.
    Lavallée-Adam M; Park SK; Martínez-Bartolomé S; He L; Yates JR
    J Am Soc Mass Spectrom; 2015 Nov; 26(11):1820-6. PubMed ID: 26002791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.