BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37040790)

  • 1. The ChvG-ChvI Regulatory Network: A Conserved Global Regulatory Circuit Among the Alphaproteobacteria with Pervasive Impacts on Host Interactions and Diverse Cellular Processes.
    Greenwich JL; Heckel BC; Alakavuklar MA; Fuqua C
    Annu Rev Microbiol; 2023 Sep; 77():131-148. PubMed ID: 37040790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acid-induced type VI secretion system is regulated by ExoR-ChvG/ChvI signaling cascade in Agrobacterium tumefaciens.
    Wu CF; Lin JS; Shaw GC; Lai EM
    PLoS Pathog; 2012 Sep; 8(9):e1002938. PubMed ID: 23028331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motility control through an anti-activation mechanism in Agrobacterium tumefaciens.
    Alakavuklar MA; Heckel BC; Stoner AM; Stembel JA; Fuqua C
    Mol Microbiol; 2021 Nov; 116(5):1281-1297. PubMed ID: 34581467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of ChvG-ChvI regulon by cell wall stress confers resistance to β-lactam antibiotics and initiates surface spreading in Agrobacterium tumefaciens.
    Williams MA; Bouchier JM; Mason AK; Brown PJB
    PLoS Genet; 2022 Dec; 18(12):e1010274. PubMed ID: 36480495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Agrobacterium tumefaciens exoR controls acid response genes and impacts exopolysaccharide synthesis, horizontal gene transfer, and virulence gene expression.
    Heckel BC; Tomlinson AD; Morton ER; Choi JH; Fuqua C
    J Bacteriol; 2014 Sep; 196(18):3221-33. PubMed ID: 24982308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ChvG-ChvI and NtrY-NtrX Two-Component Systems Coordinately Regulate Growth of Caulobacter crescentus.
    Stein BJ; Fiebig A; Crosson S
    J Bacteriol; 2021 Aug; 203(17):e0019921. PubMed ID: 34124942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A global pH sensor: Agrobacterium sensor protein ChvG regulates acid-inducible genes on its two chromosomes and Ti plasmid.
    Li L; Jia Y; Hou Q; Charles TC; Nester EW; Pan SQ
    Proc Natl Acad Sci U S A; 2002 Sep; 99(19):12369-74. PubMed ID: 12218184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agrobacterium tumefaciens ExoR represses succinoglycan biosynthesis and is required for biofilm formation and motility.
    Tomlinson AD; Ramey-Hartung B; Day TW; Merritt PM; Fuqua C
    Microbiology (Reading); 2010 Sep; 156(Pt 9):2670-2681. PubMed ID: 20576688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The periplasmic regulator ExoR inhibits ExoS/ChvI two-component signalling in Sinorhizobium meliloti.
    Chen EJ; Sabio EA; Long SR
    Mol Microbiol; 2008 Sep; 69(5):1290-303. PubMed ID: 18631237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome profiling and functional analysis of Agrobacterium tumefaciens reveals a general conserved response to acidic conditions (pH 5.5) and a complex acid-mediated signaling involved in Agrobacterium-plant interactions.
    Yuan ZC; Liu P; Saenkham P; Kerr K; Nester EW
    J Bacteriol; 2008 Jan; 190(2):494-507. PubMed ID: 17993523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Rhizobium-specific intergenic mosaic elements within an essential two-component regulatory system of Rhizobium species.
    Osterås M; Stanley J; Finan TM
    J Bacteriol; 1995 Oct; 177(19):5485-94. PubMed ID: 7559334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutation of the sensor kinase chvG in Rhizobium leguminosarum negatively impacts cellular metabolism, outer membrane stability, and symbiosis.
    Vanderlinde EM; Yost CK
    J Bacteriol; 2012 Feb; 194(4):768-77. PubMed ID: 22155778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A protease and a lipoprotein jointly modulate the conserved ExoR-ExoS-ChvI signaling pathway critical in Sinorhizobium meliloti for symbiosis with legume hosts.
    Bustamante JA; Ceron JS; Gao IT; Ramirez HA; Aviles MV; Bet Adam D; Brice JR; Cuellar RA; Dockery E; Jabagat MK; Karp DG; Lau JK; Li S; Lopez-Magaña R; Moore RR; Morin BKR; Nzongo J; Rezaeihaghighi Y; Sapienza-Martinez J; Tran TTK; Huang Z; Duthoy AJ; Barnett MJ; Long SR; Chen JC
    PLoS Genet; 2023 Oct; 19(10):e1010776. PubMed ID: 37871041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Succinoglycan production by Rhizobium meliloti is regulated through the ExoS-ChvI two-component regulatory system.
    Cheng HP; Walker GC
    J Bacteriol; 1998 Jan; 180(1):20-6. PubMed ID: 9422587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A chromosomally encoded two-component sensory transduction system is required for virulence of Agrobacterium tumefaciens.
    Charles TC; Nester EW
    J Bacteriol; 1993 Oct; 175(20):6614-25. PubMed ID: 8407839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reciprocal control of motility and biofilm formation by the PdhS2 two-component sensor kinase of Agrobacterium tumefaciens.
    Heindl JE; Crosby D; Brar S; Pinto JF; Singletary T; Merenich D; Eagan JL; Buechlein AM; Bruger EL; Waters CM; Fuqua C
    Microbiology (Reading); 2019 Feb; 165(2):146-162. PubMed ID: 30620265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ExoR is genetically coupled to the ExoS-ChvI two-component system and located in the periplasm of Sinorhizobium meliloti.
    Wells DH; Chen EJ; Fisher RF; Long SR
    Mol Microbiol; 2007 May; 64(3):647-64. PubMed ID: 17462014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide identification of genes directly regulated by ChvI and a consensus sequence for ChvI binding in Sinorhizobium meliloti.
    Ratib NR; Sabio EY; Mendoza C; Barnett MJ; Clover SB; Ortega JA; Dela Cruz FM; Balderas D; White H; Long SR; Chen EJ
    Mol Microbiol; 2018 Nov; 110(4):596-615. PubMed ID: 30192418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Members of the Sinorhizobium meliloti ChvI regulon identified by a DNA binding screen.
    Bélanger L; Charles TC
    BMC Microbiol; 2013 Jun; 13():132. PubMed ID: 23758731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The two-component system ChvGI maintains cell envelope homeostasis in Caulobacter crescentus.
    Quintero-Yanes A; Mayard A; Hallez R
    PLoS Genet; 2022 Dec; 18(12):e1010465. PubMed ID: 36480504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.