These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37041114)

  • 21. Ring-Opening Polymerization of a Bicyclic Lactone: Polyesters Derived from Norcamphor with Complete Chemical Recyclability.
    Bruckmoser J; Remke S; Rieger B
    ACS Macro Lett; 2022 Sep; 11(9):1162-1166. PubMed ID: 36073975
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbial Genes for a Circular and Sustainable Bio-PET Economy.
    Salvador M; Abdulmutalib U; Gonzalez J; Kim J; Smith AA; Faulon JL; Wei R; Zimmermann W; Jimenez JI
    Genes (Basel); 2019 May; 10(5):. PubMed ID: 31100963
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemical Recycling Processes of Waste Polyethylene Terephthalate Using Solid Catalysts.
    Bohre A; Jadhao PR; Tripathi K; Pant KK; Likozar B; Saha B
    ChemSusChem; 2023 Jul; 16(14):e202300142. PubMed ID: 36972065
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent Advances in the Chemobiological Upcycling of Polyethylene Terephthalate (PET) into Value-Added Chemicals.
    Mudondo J; Lee HS; Jeong Y; Kim TH; Kim S; Sung BH; Park SH; Park K; Cha HG; Yeon YJ; Kim HT
    J Microbiol Biotechnol; 2023 Jan; 33(1):1-14. PubMed ID: 36451300
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrothermal processing of polyethylene-terephthalate and nylon-6 mixture as a plastic waste upcycling treatment: A comprehensive multi-phase analysis.
    Darzi R; Dubowski Y; Posmanik R
    Waste Manag; 2022 Apr; 143():223-231. PubMed ID: 35279014
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Chemical Recycling of Polyesters for a Circular Plastics Economy: Challenges and Emerging Opportunities.
    Payne J; Jones MD
    ChemSusChem; 2021 Oct; 14(19):4041-4070. PubMed ID: 33826253
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Highly Active and Selective Zirconium-Based Catalyst System for the Industrial Production of Poly(lactic acid).
    Buchard A; Chuck CJ; Davidson MG; Gobius du Sart G; Jones MD; McCormick SN; Russell AD
    ACS Catal; 2023 Feb; 13(4):2681-2695. PubMed ID: 36846823
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lactide polymerisation with air-stable and highly active zinc complexes with guanidine-pyridine hybrid ligands.
    Börner J; Flörke U; Huber K; Döring A; Kuckling D; Herres-Pawlis S
    Chemistry; 2009; 15(10):2362-76. PubMed ID: 19160437
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amides as Non-polymerizable Catalytic Adjuncts Enable the Ring-Opening Polymerization of Lactide With Ferrous Acetate Under Mild Conditions.
    Naolou T; Lendlein A; Neffe AT
    Front Chem; 2019; 7():346. PubMed ID: 31165060
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Model analysis on effect of temperature on the solubility of recycling of Polyethylene Terephthalate (PET) plastic.
    Karim SS; Farrukh S; Matsuura T; Ahsan M; Hussain A; Shakir S; Chuah LF; Hasan M; Bokhari A
    Chemosphere; 2022 Nov; 307(Pt 3):136050. PubMed ID: 35977561
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stereogradient Poly(Lactic Acid) from meso-Lactide/L-Lactide Mixtures.
    Hador R; Shuster M; Venditto V; Kol M
    Angew Chem Int Ed Engl; 2022 Oct; 61(40):e202207652. PubMed ID: 35789524
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Different mechanisms at different temperatures for the ring-opening polymerization of lactide catalyzed by binuclear magnesium and zinc alkoxides.
    Sun Y; Cui Y; Xiong J; Dai Z; Tang N; Wu J
    Dalton Trans; 2015 Oct; 44(37):16383-91. PubMed ID: 26308730
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Closure of the Cycle: Enzymatic Synthesis and Functionalization of Bio-Based Polyesters.
    Pellis A; Herrero Acero E; Ferrario V; Ribitsch D; Guebitz GM; Gardossi L
    Trends Biotechnol; 2016 Apr; 34(4):316-328. PubMed ID: 26806112
    [TBL] [Abstract][Full Text] [Related]  

  • 34. N-Heterocyclic carbene iron complexes catalyze the ring-opening polymerization of lactide.
    Nylund PVS; Monney B; Weder C; Albrecht M
    Catal Sci Technol; 2022 Feb; 12(3):996-1004. PubMed ID: 35222940
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structurally well-defined group 4 metal complexes as initiators for the ring-opening polymerization of lactide monomers.
    Sauer A; Kapelski A; Fliedel C; Dagorne S; Kol M; Okuda J
    Dalton Trans; 2013 Jul; 42(25):9007-23. PubMed ID: 23552746
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Catalyst Engineering Empowers the Creation of Biomass-Derived Polyesters and Polycarbonates.
    Brandolese A; Kleij AW
    Acc Chem Res; 2022 Jun; 55(12):1634-1645. PubMed ID: 35648973
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemically Recyclable Dithioacetal Polymers via Reversible Entropy-Driven Ring-Opening Polymerization.
    Kariyawasam LS; Highmoore JF; Yang Y
    Angew Chem Int Ed Engl; 2023 Jun; 62(26):e202303039. PubMed ID: 36988027
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Minderoo-Monaco Commission on Plastics and Human Health.
    Landrigan PJ; Raps H; Cropper M; Bald C; Brunner M; Canonizado EM; Charles D; Chiles TC; Donohue MJ; Enck J; Fenichel P; Fleming LE; Ferrier-Pages C; Fordham R; Gozt A; Griffin C; Hahn ME; Haryanto B; Hixson R; Ianelli H; James BD; Kumar P; Laborde A; Law KL; Martin K; Mu J; Mulders Y; Mustapha A; Niu J; Pahl S; Park Y; Pedrotti ML; Pitt JA; Ruchirawat M; Seewoo BJ; Spring M; Stegeman JJ; Suk W; Symeonides C; Takada H; Thompson RC; Vicini A; Wang Z; Whitman E; Wirth D; Wolff M; Yousuf AK; Dunlop S
    Ann Glob Health; 2023; 89(1):23. PubMed ID: 36969097
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flotation separation of polyethylene terephthalate from waste packaging plastics through ethylene glycol pretreatment assisted by sonication.
    Wang K; Zhang Y; Zhong Y; Luo M; Du Y; Wang L; Wang H
    Waste Manag; 2020 Mar; 105():309-316. PubMed ID: 32097877
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Zirconium amine tris(phenolate): A more effective initiator for biomedical lactide.
    Jones MD; Wu X; Chaudhuri J; Davidson MG; Ellis MJ
    Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():69-74. PubMed ID: 28866217
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.