These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37041129)

  • 21. Waymo simulated driving behavior in reconstructed fatal crashes within an autonomous vehicle operating domain.
    Scanlon JM; Kusano KD; Daniel T; Alderson C; Ogle A; Victor T
    Accid Anal Prev; 2021 Dec; 163():106454. PubMed ID: 34700249
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Real-time driving risk assessment using deep learning with XGBoost.
    Shi L; Qian C; Guo F
    Accid Anal Prev; 2022 Dec; 178():106836. PubMed ID: 36191455
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling driver behavior in critical traffic scenarios for the safety assessment of automated driving.
    Fries A; Lemberg L; Fahrenkrog F; Mai M; Das A
    Traffic Inj Prev; 2023; 24(sup1):S105-S110. PubMed ID: 37267008
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multi-vehicle interaction safety of connected automated vehicles in merging area: A real-time risk assessment approach.
    Zhu J; Ma Y; Lou Y
    Accid Anal Prev; 2022 Mar; 166():106546. PubMed ID: 34965492
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crashes and near-crashes on horizontal curves along rural two-lane highways: Analysis of naturalistic driving data.
    Wang B; Hallmark S; Savolainen P; Dong J
    J Safety Res; 2017 Dec; 63():163-169. PubMed ID: 29203015
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intelligent control of self-driving vehicles based on adaptive sampling supervised actor-critic and human driving experience.
    Zhang J; Ma N; Wu Z; Wang C; Yao Y
    Math Biosci Eng; 2024 May; 21(5):6077-6096. PubMed ID: 38872570
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploring the effects of critical driving situations on driver perception time (PT) using SHRP2 naturalistic driving study data.
    Wu KF; Lin YJ
    Accid Anal Prev; 2019 Jul; 128():94-102. PubMed ID: 30991292
    [TBL] [Abstract][Full Text] [Related]  

  • 28. How Do Human-Driven Vehicles Avoid Pedestrians in Interactive Environments? A Naturalistic Driving Study.
    Sun S; Zhang Z; Zhang Z; Deng P; Tian K; Wei C
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298210
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multi-agent traffic simulations to estimate the impact of automated technologies on safety.
    Kitajima S; Shimono K; Tajima J; Antona-Makoshi J; Uchida N
    Traffic Inj Prev; 2019; 20(sup1):S58-S64. PubMed ID: 31381431
    [No Abstract]   [Full Text] [Related]  

  • 30. Deep-Neural-Network-Based Modelling of Longitudinal-Lateral Dynamics to Predict the Vehicle States for Autonomous Driving.
    Nie X; Min C; Pan Y; Li K; Li Z
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271160
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A modeling method for two-dimensional two-wheeler driving behavior during severe conflict interaction at intersections.
    Liu Z; Zhong N; Chen J; Gao B
    Accid Anal Prev; 2024 Sep; 205():107668. PubMed ID: 38889599
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel model for real-time risk evaluation of vehicle-pedestrian interactions at intersections.
    Wang T; Ge YE; Wang Y; Chen W; Fu Q; Niu Y
    Accid Anal Prev; 2024 Oct; 206():107727. PubMed ID: 39079443
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Teen drivers' awareness of vehicle instrumentation in naturalistic research.
    Ehsani JP; Haynie D; Ouimet MC; Zhu C; Guillaume C; Klauer SG; Dingus T; Simons-Morton BG
    J Safety Res; 2017 Dec; 63():127-134. PubMed ID: 29203010
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In-depth analysis of crash contributing factors and potential ADAS interventions among at-risk drivers using the SHRP 2 naturalistic driving study.
    Seacrist T; Maheshwari J; Sarfare S; Chingas G; Thirkill M; Loeb HS
    Traffic Inj Prev; 2021; 22(sup1):S68-S73. PubMed ID: 34663136
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Multi-Task Fusion Strategy-Based Decision-Making and Planning Method for Autonomous Driving Vehicles.
    Liu W; Xiang Z; Fang H; Huo K; Wang Z
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631557
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The real-world safety potential of connected vehicle technology.
    Doecke S; Grant A; Anderson RW
    Traffic Inj Prev; 2015; 16 Suppl 1():S31-5. PubMed ID: 26027973
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Safety evaluation method in multi-logical scenarios for automated vehicles based on naturalistic driving trajectory.
    Zhang P; Zhu B; Zhao J; Fan T; Sun Y
    Accid Anal Prev; 2023 Feb; 180():106926. PubMed ID: 36543079
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Defining and screening crash surrogate events using naturalistic driving data.
    Wu KF; Jovanis PP
    Accid Anal Prev; 2013 Dec; 61():10-22. PubMed ID: 23177902
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fear-Neuro-Inspired Reinforcement Learning for Safe Autonomous Driving.
    He X; Wu J; Huang Z; Hu Z; Wang J; Sangiovanni-Vincentelli A; Lv C
    IEEE Trans Pattern Anal Mach Intell; 2024 Jan; 46(1):267-279. PubMed ID: 37801378
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Existence of connected and autonomous vehicles in mixed traffic: Impacts on safety and environment.
    Wei S; Shao M
    Traffic Inj Prev; 2024; 25(3):390-399. PubMed ID: 38165395
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.