These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 37041176)

  • 1. Natural statistics of human head orientation constrain models of vestibular processing.
    Sinnott CB; Hausamann PA; MacNeilage PR
    Sci Rep; 2023 Apr; 13(1):5882. PubMed ID: 37041176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural statistics of human head orientation constrain models of vestibular processing.
    Sinnott C; Hausamann PA; MacNeilage PR
    Res Sq; 2023 Jan; ():. PubMed ID: 36711500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual signals of head rotation induce gravity-dependent inferences of linear acceleration.
    Khosravi-Hashemi N; Forbes PA; Dakin CJ; Blouin JS
    J Physiol; 2019 Nov; 597(21):5231-5246. PubMed ID: 31483492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perception of the dynamic visual vertical during sinusoidal linear motion.
    Pomante A; Selen LPJ; Medendorp WP
    J Neurophysiol; 2017 Oct; 118(4):2499-2506. PubMed ID: 28814635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Bayesian model of the disambiguation of gravitoinertial force by visual cues.
    MacNeilage PR; Banks MS; Berger DR; Bülthoff HH
    Exp Brain Res; 2007 May; 179(2):263-90. PubMed ID: 17136526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vestibular heading discrimination and sensitivity to linear acceleration in head and world coordinates.
    MacNeilage PR; Banks MS; DeAngelis GC; Angelaki DE
    J Neurosci; 2010 Jul; 30(27):9084-94. PubMed ID: 20610742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Body orientation contributes to modelling the effects of gravity for target interception in humans.
    La Scaleia B; Lacquaniti F; Zago M
    J Physiol; 2019 Apr; 597(7):2021-2043. PubMed ID: 30644996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial orientation of optokinetic nystagmus and ocular pursuit during orbital space flight.
    Moore ST; Cohen B; Raphan T; Berthoz A; Clément G
    Exp Brain Res; 2005 Jan; 160(1):38-59. PubMed ID: 15289967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roll tilt psychophysics in rhesus monkeys during vestibular and visual stimulation.
    Lewis RF; Haburcakova C; Merfeld DM
    J Neurophysiol; 2008 Jul; 100(1):140-53. PubMed ID: 18417632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perception of tilt (somatogravic illusion) in response to sustained linear acceleration during space flight.
    Clément G; Moore ST; Raphan T; Cohen B
    Exp Brain Res; 2001 Jun; 138(4):410-8. PubMed ID: 11465738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The functional significance of velocity storage and its dependence on gravity.
    Laurens J; Angelaki DE
    Exp Brain Res; 2011 May; 210(3-4):407-22. PubMed ID: 21293850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time course of the subjective visual vertical during sustained optokinetic and galvanic vestibular stimulation.
    Niehof N; Perdreau F; Koppen M; Medendorp WP
    J Neurophysiol; 2019 Aug; 122(2):788-796. PubMed ID: 31268803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inertial representation of angular motion in the vestibular system of rhesus monkeys. I. Vestibuloocular reflex.
    Angelaki DE; Hess BJ
    J Neurophysiol; 1994 Mar; 71(3):1222-49. PubMed ID: 8201414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tilt perception during dynamic linear acceleration.
    Seidman SH; Telford L; Paige GD
    Exp Brain Res; 1998 Apr; 119(3):307-14. PubMed ID: 9551831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural statistics of head roll: implications for Bayesian inference in spatial orientation.
    Willemsen SCMJ; Oostwoud Wijdenes L; van Beers RJ; Koppen M; Medendorp WP
    J Neurophysiol; 2022 Dec; 128(6):1409-1420. PubMed ID: 36321734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multisensory integration and internal models for sensing gravity effects in primates.
    Lacquaniti F; Bosco G; Gravano S; Indovina I; La Scaleia B; Maffei V; Zago M
    Biomed Res Int; 2014; 2014():615854. PubMed ID: 25061610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Implanted Vestibular Prosthesis Improves Spatial Orientation in Animals with Severe Vestibular Damage.
    Karmali F; Haburcakova C; Gong W; Della Santina CC; Merfeld DM; Lewis RF
    J Neurosci; 2021 Apr; 41(17):3879-3888. PubMed ID: 33731447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retention of VOR gain following short-term VOR adaptation.
    Schubert MC; Migliaccio AA; Minor LB; Clendaniel RA
    Exp Brain Res; 2008 May; 187(1):117-27. PubMed ID: 18231780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human movements do not look the same in a tilted world: Gravitational constraints influence the perception of biological motion.
    Pavlidou A; Lange J; Ferrè ER
    Eur J Neurosci; 2022 Feb; 55(3):800-805. PubMed ID: 34978119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial orientation and balance control changes induced by altered gravitoinertial force vectors.
    Kaufman GD; Wood SJ; Gianna CC; Black FO; Paloski WH
    Exp Brain Res; 2001 Apr; 137(3-4):397-410. PubMed ID: 11355385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.