These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 37041232)
1. Deep-trap dominated degradation of the endurance characteristics in OFET memory with polymer charge-trapping layer. Yu T; Liu Z; Wang Y; Zhang L; Hou S; Wan Z; Yin J; Gao X; Wu L; Xia Y; Liu Z Sci Rep; 2023 Apr; 13(1):5865. PubMed ID: 37041232 [TBL] [Abstract][Full Text] [Related]
2. Enhancement of Memory Properties of Pentacene Field-Effect Transistor by the Reconstruction of an Inner Vertical Electric Field with an n-Type Semiconductor Interlayer. Wang Y; Kang L; Liu Z; Wan Z; Yin J; Gao X; Xia Y; Liu Z ACS Appl Mater Interfaces; 2021 Mar; 13(11):13452-13458. PubMed ID: 33719412 [TBL] [Abstract][Full Text] [Related]
3. Shellac Films as a Natural Dielectric Layer for Enhanced Electron Transport in Polymer Field-Effect Transistors. Baek SW; Ha JW; Yoon M; Hwang DH; Lee J ACS Appl Mater Interfaces; 2018 Jun; 10(22):18948-18955. PubMed ID: 29756443 [TBL] [Abstract][Full Text] [Related]
4. High-Performance Nonvolatile Organic Field-Effect Transistor Memory Based on Organic Semiconductor Heterostructures of Pentacene/P13/Pentacene as Both Charge Transport and Trapping Layers. Li W; Guo F; Ling H; Zhang P; Yi M; Wang L; Wu D; Xie L; Huang W Adv Sci (Weinh); 2017 Aug; 4(8):1700007. PubMed ID: 28852619 [TBL] [Abstract][Full Text] [Related]
5. Filter-Free Selective Light Monitoring by Organic Field-Effect Transistor Memories with a Tunable Blend Charge-Trapping Layer. Zhang LX; Gao X; Lv JJ; Zhong YN; Xu C; Xu JL; Wang SD ACS Appl Mater Interfaces; 2019 Oct; 11(43):40366-40371. PubMed ID: 31595743 [TBL] [Abstract][Full Text] [Related]
6. Stretchable OFET Memories: Tuning the Morphology and the Charge-Trapping Ability of Conjugated Block Copolymers through Soft Segment Branching. Hsu LC; Isono T; Lin YC; Kobayashi S; Chiang YC; Jiang DH; Hung CC; Ercan E; Yang WC; Hsieh HC; Tajima K; Satoh T; Chen WC ACS Appl Mater Interfaces; 2021 Jan; 13(2):2932-2943. PubMed ID: 33423476 [TBL] [Abstract][Full Text] [Related]
7. Unveiling the Photoinduced Recovery Mystery in Conjugated Polymer-Based Transistor Memory. Chen MN; Chang SW; Prakoso SP; Li YT; Chen KL; Chiu YC ACS Appl Mater Interfaces; 2021 Sep; 13(37):44656-44662. PubMed ID: 34506100 [TBL] [Abstract][Full Text] [Related]
8. Synergistic Effects of Self-Doped Nanostructures as Charge Trapping Elements in Organic Field Effect Transistor Memory. Ling H; Lin J; Yi M; Liu B; Li W; Lin Z; Xie L; Bao Y; Guo F; Huang W ACS Appl Mater Interfaces; 2016 Jul; 8(29):18969-77. PubMed ID: 27363281 [TBL] [Abstract][Full Text] [Related]
9. Interface engineering: an effective approach toward high-performance organic field-effect transistors. Di CA; Liu Y; Yu G; Zhu D Acc Chem Res; 2009 Oct; 42(10):1573-83. PubMed ID: 19645474 [TBL] [Abstract][Full Text] [Related]
10. Enhancement of Stability in Fang PH; Kuo PL; Wang YW; Cheng HL; Chou WY Polymers (Basel); 2023 May; 15(11):. PubMed ID: 37299220 [TBL] [Abstract][Full Text] [Related]
11. Corona Poling Induced Phase Transition to Highly Polar Phase in P(VDF-TrFE-CFE) Dielectric and Charge Transport of Organic Field-Effect Transistors. Moon Y; Kim YJ; Yang D; Han N; Lee M; Kim DY ACS Appl Mater Interfaces; 2023 Jun; 15(24):29568-29576. PubMed ID: 37264497 [TBL] [Abstract][Full Text] [Related]
12. Gate-Bias Stability Behavior Tailored by Dielectric Polymer Stereostructure in Organic Transistors. Lee J; Min H; Park N; Jeong H; Han S; Kim SH; Lee HS ACS Appl Mater Interfaces; 2015 Nov; 7(45):25045-52. PubMed ID: 26501419 [TBL] [Abstract][Full Text] [Related]
13. Impact of Hydrogen Bonds Limited Dipolar Disorder in High-k Polymer Gate Dielectric on Charge Carrier Transport in OFET. Paruzel B; Pfleger J; Brus J; Menšík M; Piana F; Acharya U Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32260492 [TBL] [Abstract][Full Text] [Related]
15. Hysteresis-Free, High-Performance Polymer-Dielectric Organic Field-Effect Transistors Enabled by Supercritical Fluid. Shi Y; Zheng Y; Wang J; Zhao R; Wang T; Zhao C; Chang KC; Meng H; Wang X Research (Wash D C); 2020; 2020():6587102. PubMed ID: 33015635 [TBL] [Abstract][Full Text] [Related]
16. Epitaxial Growth of MOF Thin Film for Modifying the Dielectric Layer in Organic Field-Effect Transistors. Gu ZG; Chen SC; Fu WQ; Zheng Q; Zhang J ACS Appl Mater Interfaces; 2017 Mar; 9(8):7259-7264. PubMed ID: 28181792 [TBL] [Abstract][Full Text] [Related]
17. 4,5-Diazafluorene-Based Donor-Acceptor Small Molecules as Charge Trapping Elements for Tunable Nonvolatile Organic Transistor Memory. Yu Y; Bian LY; Chen JG; Ma QH; Li YX; Ling HF; Feng QY; Xie LH; Yi MD; Huang W Adv Sci (Weinh); 2018 Dec; 5(12):1800747. PubMed ID: 30581695 [TBL] [Abstract][Full Text] [Related]
18. Graphene Oxide as a Dielectric and Charge Trap Element in Pentacene-Based Organic Thin-Film Transistors for Nonvolatile Memory. Sarkar KJ; Pal B; Banerji P ACS Omega; 2019 Feb; 4(2):4312-4319. PubMed ID: 31459636 [TBL] [Abstract][Full Text] [Related]
19. Tailoring the Dielectric Layer Structure for Enhanced Performance of Organic Field-Effect Transistors: The Use of a Sandwiched Polar Dielectric Layer. Han S; Yang X; Zhuang X; Yu J; Li L Materials (Basel); 2016 Jul; 9(7):. PubMed ID: 28773667 [TBL] [Abstract][Full Text] [Related]
20. The Quinonoid Zwitterion Interlayer for the Improvement of Charge Carrier Mobility in Organic Field-Effect Transistors. Luczak A; Ruiz AT; Pascal S; Adamski A; Jung J; Luszczynska B; Siri O Polymers (Basel); 2021 May; 13(10):. PubMed ID: 34068290 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]