BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 37041362)

  • 21. Disposal technology and new progress for dioxins and heavy metals in fly ash from municipal solid waste incineration: A critical review.
    Shunda Lin ; Jiang X; Zhao Y; Yan J
    Environ Pollut; 2022 Oct; 311():119878. PubMed ID: 35944780
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relation between leaching characteristics of heavy metals and physical properties of fly ashes from typical municipal solid waste incinerators.
    Ni P; Li H; Zhao Y; Zhang J; Zheng C
    Environ Technol; 2017 Sep; 38(17):2105-2118. PubMed ID: 27785981
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of partially replacing ordinary Portland cement with municipal solid waste incinerator ashes and rice husk ashes on pervious concrete quality.
    Lo FC; Lo SL; Lee MG
    Environ Sci Pollut Res Int; 2020 Jul; 27(19):23742-23760. PubMed ID: 32301089
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of MSWI fly ashes along the flue gas cooling path and implications on heavy metal recovery through acid leaching.
    Wolffers M; Eggenberger U; Schlumberger S; Churakov SV
    Waste Manag; 2021 Oct; 134():231-240. PubMed ID: 34454189
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Innovative treatment trains of bottom ash (BA) from municipal solid waste incineration (MSWI) in Germany.
    Holm O; Simon FG
    Waste Manag; 2017 Jan; 59():229-236. PubMed ID: 27625178
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching.
    Santos RM; Mertens G; Salman M; Cizer Ö; Van Gerven T
    J Environ Manage; 2013 Oct; 128():807-21. PubMed ID: 23867838
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Water repellents for the leaching control of heavy metals in municipal solid waste incineration fly ash.
    Ogawa N; Amano T; Nagai Y; Hagiwara K; Honda T; Koike Y
    Waste Manag; 2021 Apr; 124():154-159. PubMed ID: 33626420
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphite particle electrodes that enhance the detoxification of municipal solid waste incineration fly ashes in a three-dimensional electrokinetic platform and its mechanisms.
    Huang T; Zhang S; Liu L; Xu J
    Environ Pollut; 2018 Dec; 243(Pt B):929-939. PubMed ID: 30245455
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of municipal waste incineration fly ashes (MSWI FA) in metakaolin-based geopolymer.
    Tan J; Dan H; Li J
    Environ Sci Pollut Res Int; 2022 Nov; 29(53):80727-80738. PubMed ID: 35729388
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal co-treatment of aluminum dross and municipal solid waste incineration fly ash: Mineral transformation, crusting prevention, detoxification, and low-carbon cementitious material preparation.
    Li J; Jia A; Hou X; Wang X; Mao Y; Wang W
    J Environ Manage; 2023 Mar; 329():117090. PubMed ID: 36584517
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study on physiochemical properties and leaching behavior of residual ash fractions from a municipal solid waste incinerator (MSWI) plant.
    Nikravan M; Ramezanianpour AA; Maknoon R
    J Environ Manage; 2020 Apr; 260():110042. PubMed ID: 31941624
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Re-evaluating the TCLP's Role as the Regulatory Driver in the Management of Municipal Solid Waste Incinerator Ash.
    Clavier KA; Liu Y; Intrakamhaeng V; Townsend TG
    Environ Sci Technol; 2019 Jul; 53(14):7964-7973. PubMed ID: 31246437
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Co-stabilization/solidification of heavy metals in municipal solid waste incineration fly ash and electrolytic manganese residue based on self-bonding characteristics.
    Zhan X; Wang L; Gong J; Deng R; Wu M
    Chemosphere; 2022 Nov; 307(Pt 2):135793. PubMed ID: 35872056
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Solidification of municipal solid waste incineration fly ash and immobilization of heavy metals using waste glass in alkaline activation system.
    Tian X; Rao F; Li C; Ge W; Lara NO; Song S; Xia L
    Chemosphere; 2021 Nov; 283():131240. PubMed ID: 34182622
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recycling MSWI bottom and fly ash as raw materials for Portland cement.
    Pan JR; Huang C; Kuo JJ; Lin SH
    Waste Manag; 2008; 28(7):1113-8. PubMed ID: 17627805
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Environmental filling materials based on phosphogypsum powder with municipal solid waste incineration ash.
    Yin L; Guo Q; Wang X; Yuan J; Zhang Q
    Sci Rep; 2023 Jan; 13(1):478. PubMed ID: 36627327
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synergistic influence of diatomite and MoS
    Huang T; Song D; Zhou L; Di Y; Zhang S; Tao H
    Waste Manag; 2023 Apr; 161():166-177. PubMed ID: 36889123
    [TBL] [Abstract][Full Text] [Related]  

  • 38. What waste management can learn from the traditional mining sector: Towards an integrated assessment and reporting of anthropogenic resources.
    Jakob L; Michal Š; Franz-Georg S; Margarida Q; Jiri H; Florian H; Valerio F; Johann F; Roberto B; Elza B; Anna B; Dominik B
    Waste Manag; 2020 Jul; 113():154-156. PubMed ID: 32531663
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glass recovery and production of manufactured aggregate from MSWI bottom ashes from fluidized bed and grate incineration by means of enhanced treatment.
    Mühl J; Skutan S; Stockinger G; Blasenbauer D; Lederer J
    Waste Manag; 2023 Aug; 168():321-333. PubMed ID: 37336140
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metal distribution characteristic of MSWI bottom ash in view of metal recovery.
    Xia Y; He P; Shao L; Zhang H
    J Environ Sci (China); 2017 Feb; 52():178-189. PubMed ID: 28254036
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.