These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37042030)

  • 21. Cell-cell communication regulates the effects of protein aspartate phosphatases on the phosphorelay controlling development in Bacillus subtilis.
    Perego M; Hoch JA
    Proc Natl Acad Sci U S A; 1996 Feb; 93(4):1549-53. PubMed ID: 8643670
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural basis of response regulator dephosphorylation by Rap phosphatases.
    Parashar V; Mirouze N; Dubnau DA; Neiditch MB
    PLoS Biol; 2011 Feb; 9(2):e1000589. PubMed ID: 21346797
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Negative regulation of Bacillus anthracis sporulation by the Spo0E family of phosphatases.
    Bongiorni C; Stoessel R; Perego M
    J Bacteriol; 2007 Apr; 189(7):2637-45. PubMed ID: 17259308
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The RapP-PhrP quorum-sensing system of Bacillus subtilis strain NCIB3610 affects biofilm formation through multiple targets, due to an atypical signal-insensitive allele of RapP.
    Omer Bendori S; Pollak S; Hizi D; Eldar A
    J Bacteriol; 2015 Feb; 197(3):592-602. PubMed ID: 25422306
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An atypical Phr peptide regulates the developmental switch protein RapH.
    Mirouze N; Parashar V; Baker MD; Dubnau DA; Neiditch MB
    J Bacteriol; 2011 Nov; 193(22):6197-206. PubMed ID: 21908671
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular analysis of Phr peptide processing in Bacillus subtilis.
    Stephenson S; Mueller C; Jiang M; Perego M
    J Bacteriol; 2003 Aug; 185(16):4861-71. PubMed ID: 12897006
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel Rap-Phr system in Bacillus velezensis NAU-B3 regulates surfactin production and sporulation via interaction with ComA.
    Liang Z; Qiao JQ; Li PP; Zhang LL; Qiao ZX; Lin L; Yu CJ; Yang Y; Zubair M; Gu Q; Wu HJ; Borriss R; Gao XW
    Appl Microbiol Biotechnol; 2020 Dec; 104(23):10059-10074. PubMed ID: 33043389
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rap phosphatase of virulence plasmid pXO1 inhibits Bacillus anthracis sporulation.
    Bongiorni C; Stoessel R; Shoemaker D; Perego M
    J Bacteriol; 2006 Jan; 188(2):487-98. PubMed ID: 16385039
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temporal separation of distinct differentiation pathways by a dual specificity Rap-Phr system in Bacillus subtilis.
    Smits WK; Bongiorni C; Veening JW; Hamoen LW; Kuipers OP; Perego M
    Mol Microbiol; 2007 Jul; 65(1):103-20. PubMed ID: 17581123
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new family of aspartyl phosphate phosphatases targeting the sporulation transcription factor Spo0A of Bacillus subtilis.
    Perego M
    Mol Microbiol; 2001 Oct; 42(1):133-43. PubMed ID: 11679073
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphatases modulate the bistable sporulation gene expression pattern in Bacillus subtilis.
    Veening JW; Hamoen LW; Kuipers OP
    Mol Microbiol; 2005 Jun; 56(6):1481-94. PubMed ID: 15916600
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Complexity in bacterial cell-cell communication: quorum signal integration and subpopulation signaling in the Bacillus subtilis phosphorelay.
    Bischofs IB; Hug JA; Liu AW; Wolf DM; Arkin AP
    Proc Natl Acad Sci U S A; 2009 Apr; 106(16):6459-64. PubMed ID: 19380751
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bacillus subtilis Histidine Kinase KinC Activates Biofilm Formation by Controlling Heterogeneity of Single-Cell Responses.
    Chen Z; Srivastava P; Zarazúa-Osorio B; Marathe A; Fujita M; Igoshin OA
    mBio; 2022 Feb; 13(1):e0169421. PubMed ID: 35012345
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification and analysis of Rap-Phr system in Bacillus cereus 0-9.
    Zhao L; Liu Q; Xu FH; Liu H; Zhang J; Liu F; Wang G
    FEMS Microbiol Lett; 2022 May; 369(1):. PubMed ID: 35293995
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular and cellular factors control signal transduction via switchable allosteric modulator proteins (SAMPs).
    Babel H; Bischofs IB
    BMC Syst Biol; 2016 Apr; 10():35. PubMed ID: 27122155
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Induction of Plasmid Conjugation in Bacillus subtilis Is Bistable and Driven by a Direct Interaction of a Rap/Phr Quorum-sensing System with a Master Repressor.
    Rösch TC; Graumann PL
    J Biol Chem; 2015 Aug; 290(33):20221-32. PubMed ID: 26112413
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A mobile genetic element increases bacterial host fitness by manipulating development.
    Jones JM; Grinberg I; Eldar A; Grossman AD
    Elife; 2021 Mar; 10():. PubMed ID: 33655883
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Transcription Factor CpcR Determines Cell Fate by Modulating the Initiation of Sporulation in Bacillus thuringiensis.
    Hou S; Zhang R; Lereclus D; Peng Q; Zhang J; Slamti L; Song F
    Appl Environ Microbiol; 2022 Mar; 88(6):e0237421. PubMed ID: 35108078
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biofilm Formation Drives Transfer of the Conjugative Element ICE
    Lécuyer F; Bourassa JS; Gélinas M; Charron-Lamoureux V; Burrus V; Beauregard PB
    mSphere; 2018 Sep; 3(5):. PubMed ID: 30258041
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A conserved allosteric element controls specificity and activity of functionally divergent PP2C phosphatases from Bacillus subtilis.
    Ho K; Bradshaw N
    J Biol Chem; 2021; 296():100518. PubMed ID: 33684446
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.