These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37042277)

  • 1. Regulation of the swimming kinematics of lampreys Petromyzon marinus across changes in viscosity.
    Tytell ED; Cooper LO; Lin YL; Reis PM
    J Exp Biol; 2023 May; 226(9):. PubMed ID: 37042277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming.
    Tytell ED; Hsu CY; Williams TL; Cohen AH; Fauci LJ
    Proc Natl Acad Sci U S A; 2010 Nov; 107(46):19832-7. PubMed ID: 21037110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How the bending kinematics of swimming lampreys build negative pressure fields for suction thrust.
    Gemmell BJ; Fogerson SM; Costello JH; Morgan JR; Dabiri JO; Colin SP
    J Exp Biol; 2016 Dec; 219(Pt 24):3884-3895. PubMed ID: 27974534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thrust generation during steady swimming and acceleration from rest in anguilliform swimmers.
    Du Clos KT; Dabiri JO; Costello JH; Colin SP; Morgan JR; Fogerson SM; Gemmell BJ
    J Exp Biol; 2019 Nov; 222(Pt 22):. PubMed ID: 31740507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Similarities and Differences for Swimming in Larval and Adult Lampreys.
    McClellan AD; Pale T; Messina JA; Buso S; Shebib A
    Physiol Biochem Zool; 2016; 89(4):294-312. PubMed ID: 27327180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensorimotor control of swimming Polypterus senegalus is preserved during sensory deprivation conditions across altered environments.
    Hainer J; Lutek K; Maki H; Standen EM
    J Exp Biol; 2023 May; 226(9):. PubMed ID: 37042272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of curvature feedback in the energetics and dynamics of lamprey swimming: A closed-loop model.
    Hamlet CL; Hoffman KA; Tytell ED; Fauci LJ
    PLoS Comput Biol; 2018 Aug; 14(8):e1006324. PubMed ID: 30118476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Swimming kinematics and performance of spinal transected lampreys with different levels of axon regeneration.
    Fies J; Gemmell BJ; Fogerson SM; Morgan JR; Tytell ED; Colin SP
    J Exp Biol; 2021 Nov; 224(21):. PubMed ID: 34632494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Body stiffness and damping depend sensitively on the timing of muscle activation in lampreys.
    Tytell ED; Carr JA; Danos N; Wagenbach C; Sullivan CM; Kiemel T; Cowan NJ; Ankarali MM
    Integr Comp Biol; 2018 Nov; 58(5):860-873. PubMed ID: 29873726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Airfoil-like mechanics generate thrust on the anterior body of swimming fishes.
    Lucas KN; Lauder GV; Tytell ED
    Proc Natl Acad Sci U S A; 2020 May; 117(19):10585-10592. PubMed ID: 32341168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of swimming in the lamprey, Petromyzon marinus, by serotonergic and dopaminergic drugs.
    Kemnitz CP; Strauss TR; Hosford DM; Buchanan JT
    Neurosci Lett; 1995 Dec; 201(2):115-8. PubMed ID: 8848231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of groups of propriospinal interneurons on fictive swimming in the isolated spinal cord of the lamprey.
    Rovainen CM
    J Neurophysiol; 1985 Oct; 54(4):959-77. PubMed ID: 2999351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of suction pressure dynamics of sea lampreys, Petromyzon marinus.
    Shi H; Holbrook CM; Cao Y; Sepúlveda N; Tan X
    PLoS One; 2021; 16(4):e0247884. PubMed ID: 33905407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fishes regulate tail-beat kinematics to minimize speed-specific cost of transport.
    Li G; Liu H; Müller UK; Voesenek CJ; van Leeuwen JL
    Proc Biol Sci; 2021 Dec; 288(1964):20211601. PubMed ID: 34847768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wake structures behind a swimming robotic lamprey with a passively flexible tail.
    Leftwich MC; Tytell ED; Cohen AH; Smits AJ
    J Exp Biol; 2012 Feb; 215(Pt 3):416-25. PubMed ID: 22246250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An elastic rod model for anguilliform swimming.
    McMillen T; Holmes P
    J Math Biol; 2006 Nov; 53(5):843-86. PubMed ID: 16972099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroendocrine and behavioral responses to weak electric fields in adult sea lampreys (Petromyzon marinus).
    Chung-Davidson YW; Bryan MB; Teeter J; Bedore CN; Li W
    Horm Behav; 2008 Jun; 54(1):34-40. PubMed ID: 18329031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shifting patterns of nitrogen excretion and amino acid catabolism capacity during the life cycle of the sea lamprey (Petromyzon marinus).
    Wilkie MP; Claude JF; Cockshutt A; Holmes JA; Wang YS; Youson JH; Walsh PJ
    Physiol Biochem Zool; 2006; 79(5):885-98. PubMed ID: 16927235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear muscles, passive viscoelasticity and body taper conspire to create neuromechanical phase lags in anguilliform swimmers.
    McMillen T; Williams T; Holmes P
    PLoS Comput Biol; 2008 Aug; 4(8):e1000157. PubMed ID: 18769734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D computational models explain muscle activation patterns and energetic functions of internal structures in fish swimming.
    Ming T; Jin B; Song J; Luo H; Du R; Ding Y
    PLoS Comput Biol; 2019 Sep; 15(9):e1006883. PubMed ID: 31487282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.